Inverzná funkcia logaritmu. Základné vlastnosti logaritmov


Logaritmus čísla b (b > 0) na základ a (a > 0, a ≠ 1)– exponent, na ktorý treba zvýšiť číslo a, aby sme získali b.

Logaritmus základu 10 z b možno zapísať ako log(b) a logaritmus k základu e (prirodzený logaritmus) je ln(b).

Často sa používa pri riešení problémov s logaritmami:

Vlastnosti logaritmov

Existujú štyri hlavné vlastnosti logaritmov.

Nech a > 0, a ≠ 1, x > 0 a y > 0.

Vlastnosť 1. Logaritmus súčinu

Logaritmus produktu rovná sa súčtu logaritmov:

log a (x ⋅ y) = log a x + log a y

Vlastnosť 2. Logaritmus kvocientu

Logaritmus kvocientu rovná sa rozdielu logaritmov:

log a (x / y) = log a x – log a y

Vlastnosť 3. Logaritmus sily

Logaritmus stupňov rovná súčinu mocniny a logaritmu:

Ak je základ logaritmu v stupňoch, potom platí iný vzorec:

Vlastnosť 4. Logaritmus koreňa

Túto vlastnosť možno získať z vlastnosti logaritmu mocniny, pretože n-tá odmocnina sa rovná mocnine 1/n:

Vzorec na prevod z logaritmu v jednom základe na logaritmus v inom základe

Tento vzorec sa tiež často používa pri riešení rôznych úloh na logaritmoch:

Špeciálny prípad:

Porovnanie logaritmov (nerovnosti)

Majme 2 funkcie f(x) a g(x) pod logaritmami s rovnakými základňami a medzi nimi je znamienko nerovnosti:

Ak ich chcete porovnať, musíte sa najprv pozrieť na základ logaritmov a:

  • Ak a > 0, potom f(x) > g(x) > 0
  • Ak 0< a < 1, то 0 < f(x) < g(x)

Ako riešiť problémy s logaritmami: príklady

Problémy s logaritmami zaradenej do Jednotnej štátnej skúšky z matematiky pre 11. ročník v úlohe 5 a úlohe 7, úlohy s riešením nájdete na našej stránke v príslušných sekciách. V banke matematických úloh sa nachádzajú aj úlohy s logaritmami. Všetky príklady nájdete na stránke.

Čo je logaritmus

Logaritmy boli vždy považované za zložitú tému v školských kurzoch matematiky. Existuje mnoho rôznych definícií logaritmu, ale z nejakého dôvodu väčšina učebníc používa najzložitejšie a neúspešné z nich.

Logaritmus definujeme jednoducho a jasne. Ak to chcete urobiť, vytvorte tabuľku:

Takže máme mocniny dvoch.

Logaritmy - vlastnosti, vzorce, ako riešiť

Ak vezmete číslo zo spodného riadku, ľahko nájdete moc, na ktorú budete musieť zvýšiť dvojku, aby ste toto číslo získali. Napríklad, ak chcete získať 16, musíte zvýšiť dve na štvrtú mocninu. A aby ste získali 64, musíte zvýšiť dve na šiestu mocninu. To je možné vidieť z tabuľky.

A teraz vlastne definícia logaritmu:

základ a argumentu x je mocnina, na ktorú sa číslo a musí zvýšiť, aby sa získalo číslo x.

Označenie: log a x = b, kde a je základ, x je argument, b je to, čomu sa v skutočnosti rovná logaritmus.

Napríklad 2 3 = 8 ⇒log 2 8 = 3 (základný 2 logaritmus čísla 8 je tri, pretože 2 3 = 8). S rovnakým úspechom log 2 64 = 6, pretože 2 6 = 64.

Zavolá sa operácia hľadania logaritmu čísla k danému základu. Pridajme teda do tabuľky nový riadok:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Bohužiaľ, nie všetky logaritmy sa počítajú tak ľahko. Skúste napríklad nájsť log 2 5. Číslo 5 nie je v tabuľke, ale logika diktuje, že logaritmus bude ležať niekde na intervale. Pretože 22< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Takéto čísla sa nazývajú iracionálne: čísla za desatinnou čiarkou možno písať do nekonečna a nikdy sa neopakujú. Ak sa logaritmus ukáže ako iracionálny, je lepšie ho nechať tak: log 2 5, log 3 8, log 5 100.

Je dôležité pochopiť, že logaritmus je výraz s dvoma premennými (základ a argument). Mnoho ľudí si spočiatku mätie, kde je základ a kde argument. Aby ste predišli nepríjemným nedorozumeniam, pozrite sa na obrázok:

Pred nami nie je nič iné ako definícia logaritmu. Pamätajte: logaritmus je sila, do ktorého musí byť základňa zabudovaná, aby sa získal argument. Je to základňa, ktorá je vyvýšená na mocninu - na obrázku je zvýraznená červenou farbou. Ukazuje sa, že základňa je vždy na dne! Hneď na prvej hodine poviem svojim študentom toto úžasné pravidlo – a nevznikne zmätok.

Ako počítať logaritmy

Definíciu sme si vymysleli – ostáva už len naučiť sa počítať logaritmy, t.j. zbavte sa znaku „log“. Na začiatok si všimneme, že z definície vyplývajú dve dôležité skutočnosti:

  1. Argument a základ musia byť vždy väčšie ako nula. Vyplýva to z definície stupňa racionálnym exponentom, na ktorý je redukovaná definícia logaritmu.
  2. Základ musí byť odlišný od jedného, ​​pretože jeden v akomkoľvek stupni stále zostáva jedným. Z tohto dôvodu je otázka „na akú silu treba pozdvihnúť, aby sme dostali dve“ nezmyselná. Taký stupeň neexistuje!

Takéto obmedzenia sú tzv rozsah prijateľných hodnôt(ODZ). Ukazuje sa, že ODZ logaritmu vyzerá takto: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Všimnite si, že neexistujú žiadne obmedzenia na číslo b (hodnota logaritmu). Napríklad logaritmus môže byť záporný: log 2 0,5 = -1, pretože 0,5 = 2 -1.

Teraz však uvažujeme iba o číselných výrazoch, kde nie je potrebné poznať VA logaritmu. Všetky obmedzenia už autori problémov zohľadnili. Keď však do hry vstúpia logaritmické rovnice a nerovnosti, požiadavky DL sa stanú povinnými. Koniec koncov, základ a argument môže obsahovať veľmi silné konštrukcie, ktoré nemusia nevyhnutne zodpovedať vyššie uvedeným obmedzeniam.

Teraz sa pozrime na všeobecnú schému výpočtu logaritmov. Pozostáva z troch krokov:

  1. Vyjadrite základ a a argument x ako mocninu s minimálnym možným základom väčším ako jedna. Po ceste je lepšie zbaviť sa desatinných miest;
  2. Riešte rovnicu pre premennú b: x = a b ;
  3. Výsledné číslo b bude odpoveďou.

To je všetko! Ak sa logaritmus ukáže ako iracionálny, bude to viditeľné už v prvom kroku. Požiadavka, aby bol základ väčší ako jedna, je veľmi dôležitá: znižuje sa tým pravdepodobnosť chyby a výrazne sa zjednodušujú výpočty. Je to rovnaké s desatinnými zlomkami: ak ich okamžite prevediete na obyčajné, bude oveľa menej chýb.

Pozrime sa, ako táto schéma funguje na konkrétnych príkladoch:

Úloha. Vypočítajte logaritmus: log 5 25

  1. Predstavme si základ a argument ako mocninu päťky: 5 = 5 1 ; 25 = 52;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Dostali sme odpoveď: 2.

Úloha. Vypočítajte logaritmus:

Úloha. Vypočítajte logaritmus: log 4 64

  1. Predstavme si základ a argument ako mocninu dvoch: 4 = 2 2 ; 64 = 26;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Dostali sme odpoveď: 3.

Úloha. Vypočítajte logaritmus: log 16 1

  1. Predstavme si základ a argument ako mocninu dvoch: 16 = 2 4 ; 1 = 20;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Dostali sme odpoveď: 0.

Úloha. Vypočítajte logaritmus: log 7 14

  1. Predstavme si základ a argument ako mocninu siedmich: 7 = 7 1 ; 14 nemôže byť vyjadrené ako mocnina siedmich, pretože 7 1< 14 < 7 2 ;
  2. Z predchádzajúceho odseku vyplýva, že logaritmus sa nepočíta;
  3. Odpoveď je žiadna zmena: log 7 14.

Malá poznámka k poslednému príkladu. Ako si môžete byť istý, že číslo nie je presnou mocninou iného čísla? Je to veľmi jednoduché – stačí to započítať do hlavných faktorov. Ak má expanzia aspoň dva rôzne faktory, číslo nie je presnou mocninou.

Úloha. Zistite, či sú čísla presné mocniny: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - presný stupeň, pretože existuje len jeden multiplikátor;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nie je presná mocnina, pretože existujú dva faktory: 3 a 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - presný stupeň;
35 = 7 · 5 - opäť nie presná mocnina;
14 = 7 · 2 - opäť nie presný stupeň;

Všimnite si tiež, že samotné prvočísla sú vždy presné mocniny samých seba.

Desatinný logaritmus

Niektoré logaritmy sú také bežné, že majú špeciálny názov a symbol.

argumentu x je logaritmus so základom 10, t.j. Mocnina, na ktorú treba zvýšiť číslo 10, aby sme získali číslo x. Označenie: lg x.

Napríklad log 10 = 1; lg100 = 2; lg 1000 = 3 - atď.

Keď sa odteraz v učebnici objaví fráza ako „Nájsť lg 0,01“, vedzte, že to nie je preklep. Toto je desiatkový logaritmus. Ak však tento zápis nepoznáte, vždy ho môžete prepísať:
log x = log 10 x

Všetko, čo platí pre bežné logaritmy, platí aj pre desiatkové logaritmy.

Prirodzený logaritmus

Existuje ďalší logaritmus, ktorý má svoje vlastné označenie. V niektorých ohľadoch je to ešte dôležitejšie ako desatinné číslo. Hovoríme o prirodzenom logaritme.

argumentu x je logaritmus so základom e, t.j. mocnina, na ktorú treba zvýšiť číslo e, aby sme získali číslo x. Označenie: ln x.

Mnohí sa budú pýtať: aké je číslo e? Toto je iracionálne číslo, jeho presná hodnota sa nedá nájsť a zapísať. Uvediem len prvé čísla:
e = 2,718281828459…

Nebudeme sa podrobne zaoberať tým, čo je toto číslo a prečo je potrebné. Pamätajte, že e je základom prirodzeného logaritmu:
ln x = log e x

Teda ln e = 1; lne2 = 2; ln e 16 = 16 - atď. Na druhej strane, ln 2 je iracionálne číslo. Vo všeobecnosti je prirodzený logaritmus akéhokoľvek racionálneho čísla iracionálny. Samozrejme okrem jedného: ln 1 = 0.

Pre prirodzené logaritmy platia všetky pravidlá, ktoré platia pre bežné logaritmy.

Pozri tiež:

Logaritmus. Vlastnosti logaritmu (mocnosť logaritmu).

Ako znázorniť číslo ako logaritmus?

Používame definíciu logaritmu.

Logaritmus je exponent, na ktorý sa musí základ zvýšiť, aby sa získalo číslo pod znamienkom logaritmu.

Ak teda chcete reprezentovať určité číslo c ako logaritmus k základu a, musíte pod znamienko logaritmu vložiť mocninu s rovnakým základom ako základ logaritmu a zapísať toto číslo c ako exponent:

Absolútne akékoľvek číslo môže byť reprezentované ako logaritmus - kladné, záporné, celé číslo, zlomkové, racionálne, iracionálne:

Aby ste si nezamieňali a a c v stresujúcich podmienkach testu alebo skúšky, môžete použiť nasledujúce pravidlo zapamätania:

čo je dole, ide dole, čo je hore, ide hore.

Napríklad musíte reprezentovať číslo 2 ako logaritmus k základu 3.

Máme dve čísla - 2 a 3. Tieto čísla sú základ a exponent, ktoré zapíšeme pod znamienko logaritmu. Zostáva určiť, ktoré z týchto čísel sa má zapísať k mocnine a ktoré až k exponentu.

Základ 3 v zápise logaritmu je dole, čo znamená, že keď zadáme dvojku ako logaritmus k základu 3, zapíšeme aj 3 k základu.

2 je vyšší ako tri. A v zápise stupňa dva píšeme nad tri, teda ako exponent:

Logaritmy. Vstupná úroveň.

Logaritmy

Logaritmus kladné číslo b na základe a, Kde a > 0, a ≠ 1, sa nazýva exponent, na ktorý sa musí číslo zvýšiť a dostať b.

Definícia logaritmu dá sa to stručne napísať takto:

Táto rovnosť platí pre b > 0, a > 0, a ≠ 1. Zvyčajne sa to nazýva logaritmická identita.
Volá sa akcia nájdenia logaritmu čísla pomocou logaritmu.

Vlastnosti logaritmov:

Logaritmus produktu:

Logaritmus kvocientu:

Výmena logaritmickej základne:

Logaritmus stupňov:

Logaritmus koreňa:

Logaritmus s výkonovou základňou:





Desatinné a prirodzené logaritmy.

Desatinný logaritmusčísla volajú logaritmus tohto čísla so základom 10 a píšu   lg b
Prirodzený logaritmusčísla sa nazývajú logaritmus tohto čísla so základom e, Kde e- iracionálne číslo približne rovné 2,7. Zároveň píšu ln b.

Ďalšie poznámky o algebre a geometrii

Základné vlastnosti logaritmov

Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať - bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Uvažujme dva logaritmy s rovnakými základňami: log a x a log a y. Potom ich možno sčítať a odčítať a:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Denník 6 4 + denník 6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Základy sú opäť rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa odstránený zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu.

Ako riešiť logaritmy

To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 2 4 ; 49 = 7 2. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ obsahujú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus log a x. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu.

V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b s touto mocninou dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log 25 64 = log 5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. log a 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Dnes budeme hovoriť o logaritmické vzorce a dáme orientačné príklady riešenia.

Sami implikujú vzory riešení podľa základných vlastností logaritmov. Pred použitím logaritmických vzorcov na riešenie vám pripomenieme všetky vlastnosti:

Teraz si to na základe týchto vzorcov (vlastností) ukážeme príklady riešenia logaritmov.

Príklady riešenia logaritmov na základe vzorcov.

Logaritmus kladné číslo b na základ a (označené log a b) je exponent, na ktorý musí byť a umocnené, aby sme dostali b, pričom b > 0, a > 0 a 1.

Podľa definície log a b = x, čo je ekvivalent a x = b, teda log a a x = x.

Logaritmy, príklady:

log 2 8 = 3, pretože 2 3 = 8

log 7 49 = 2, pretože 72 = 49

log 5 1/5 = -1, pretože 5-1 = 1/5

Desatinný logaritmus- ide o obyčajný logaritmus, ktorého základňa je 10. Označuje sa ako lg.

log 10 100 = 2, pretože 102 = 100

Prirodzený logaritmus- tiež obyčajný logaritmus, logaritmus, ale so základom e (e = 2,71828... - iracionálne číslo). Označené ako ln.

Je vhodné zapamätať si vzorce alebo vlastnosti logaritmov, pretože ich budeme potrebovať neskôr pri riešení logaritmov, logaritmických rovníc a nerovníc. Prepracujme každý vzorec znova s ​​príkladmi.

  • Základná logaritmická identita
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmus súčinu sa rovná súčtu logaritmov
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Logaritmus kvocientu sa rovná rozdielu logaritmov
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Vlastnosti mocniny logaritmického čísla a základu logaritmu

    Exponent logaritmického čísla log a b m = mlog a b

    Exponent základu logaritmu log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ak m = n, dostaneme log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Prechod na nový základ
    log a b = log c b/log c a,

    ak c = b, dostaneme log b b = 1

    potom log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Ako vidíte, vzorce pre logaritmy nie sú také zložité, ako sa zdá. Teraz, keď sme sa pozreli na príklady riešenia logaritmov, môžeme prejsť k logaritmickým rovniciam. Na príklady riešenia logaritmických rovníc sa pozrieme podrobnejšie v článku: "". Nenechajte si to ujsť!

Ak máte stále otázky týkajúce sa riešenia, napíšte ich do komentárov k článku.

Poznámka: rozhodli sme sa získať inú triedu vzdelávania a študovať v zahraničí ako voliteľnú možnosť.

Ako sa spoločnosť rozvíjala a výroba sa stávala zložitejšou, rozvíjala sa aj matematika. Pohyb od jednoduchého k zložitému. Od bežného účtovania metódou sčítania a odčítania sme s ich opakovaným opakovaním dospeli k pojmu násobenie a delenie. Zníženie opakovanej operácie násobenia sa stalo konceptom umocňovania. Prvé tabuľky závislosti čísel od základne a počtu umocnení zostavil už v 8. storočí indický matematik Varasena. Z nich môžete spočítať čas výskytu logaritmov.

Historický náčrt

Oživenie Európy v 16. storočí podnietilo aj rozvoj mechaniky. T vyžadovalo veľké množstvo výpočtov súvisiace s násobením a delením viacciferných čísel. Staroveké stoly mali skvelú službu. Umožnili nahradiť zložité operácie jednoduchšími – sčítanie a odčítanie. Veľkým krokom vpred bola práca matematika Michaela Stiefela, publikovaná v roku 1544, v ktorej realizoval myšlienku mnohých matematikov. To umožnilo použiť tabuľky nielen pre mocniny vo forme prvočísel, ale aj pre ľubovoľné racionálne.

V roku 1614 Škót John Napier, ktorý rozvíjal tieto myšlienky, prvýkrát zaviedol nový termín „logaritmus čísla“. Boli zostavené nové komplexné tabuľky na výpočet logaritmov sínusov a kosínusov, ako aj dotyčníc. To značne znížilo prácu astronómov.

Začali sa objavovať nové tabuľky, ktoré vedci úspešne používali už tri storočia. Uplynulo veľa času, kým nová operácia v algebre nadobudla svoju hotovú podobu. Bola daná definícia logaritmu a boli študované jeho vlastnosti.

Až v 20. storočí, s príchodom kalkulačky a počítača, ľudstvo opustilo staroveké tabuľky, ktoré úspešne fungovali počas 13. storočia.

Dnes nazývame logaritmus b na základe čísla x, ktoré je mocninou a na vytvorenie b. Toto je napísané ako vzorec: x = log a(b).

Napríklad log 3(9) by sa rovnalo 2. To je zrejmé, ak budete postupovať podľa definície. Ak zvýšime 3 na 2, dostaneme 9.

Formulovaná definícia teda stanovuje len jedno obmedzenie: čísla a a b musia byť reálne.

Typy logaritmov

Klasická definícia sa nazýva reálny logaritmus a je vlastne riešením rovnice a x = b. Možnosť a = 1 je hraničná a nie je zaujímavá. Pozor: 1 na akúkoľvek mocninu sa rovná 1.

Skutočná hodnota logaritmu definované iba vtedy, keď základ a argument sú väčšie ako 0 a základ sa nesmie rovnať 1.

Osobitné miesto v oblasti matematiky hrať logaritmy, ktoré budú pomenované v závislosti od veľkosti ich základne:

Pravidlá a obmedzenia

Základnou vlastnosťou logaritmov je pravidlo: logaritmus súčinu sa rovná logaritmickému súčtu. log abp = log a(b) + log a(p).

Ako variant tohto tvrdenia bude: log c(b/p) = log c(b) - log c(p), kvocientová funkcia sa rovná rozdielu funkcií.

Z predchádzajúcich dvoch pravidiel je ľahké vidieť, že: log a(b p) = p * log a(b).

Medzi ďalšie vlastnosti patrí:

Komentujte. Nie je potrebné robiť bežnú chybu - logaritmus súčtu sa nerovná súčtu logaritmov.

Po mnoho storočí bola operácia hľadania logaritmu pomerne časovo náročná úloha. Matematici použili dobre známy vzorec logaritmickej teórie expanzie polynómov:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), kde n je prirodzené číslo väčšie ako 1, ktoré určuje presnosť výpočtu.

Logaritmy s inými bázami boli vypočítané pomocou vety o prechode z jednej bázy na druhú a vlastnosti logaritmu súčinu.

Keďže táto metóda je veľmi náročná na prácu a pri riešení praktických problémov náročné na implementáciu sme použili vopred zostavené tabuľky logaritmov, čo výrazne urýchlilo celú prácu.

V niektorých prípadoch boli použité špeciálne zostavené grafy logaritmov, ktoré poskytli menšiu presnosť, ale výrazne urýchlili hľadanie požadovanej hodnoty. Krivka funkcie y = log a(x), vytvorená cez niekoľko bodov, umožňuje pomocou bežného pravítka nájsť hodnotu funkcie v akomkoľvek inom bode. Inžinieri na tieto účely už dlho používajú takzvaný milimetrový papier.

V 17. storočí sa objavili prvé pomocné analógové výpočtové podmienky, ktoré v 19. storočí nadobudli ucelenú podobu. Najúspešnejšie zariadenie sa nazývalo posuvné pravítko. Napriek jednoduchosti zariadenia jeho vzhľad výrazne urýchlil proces všetkých inžinierskych výpočtov, čo je ťažké preceňovať. V súčasnosti pozná toto zariadenie len málo ľudí.

Nástup kalkulačiek a počítačov spôsobil, že používanie akýchkoľvek iných zariadení bolo zbytočné.

Rovnice a nerovnice

Na riešenie rôznych rovníc a nerovníc pomocou logaritmov sa používajú tieto vzorce:

  • Prechod z jednej bázy na druhú: log a(b) = log c(b) / log c(a);
  • V dôsledku predchádzajúcej možnosti: log a(b) = 1 / log b(a).

Na riešenie nerovností je užitočné vedieť:

  • Hodnota logaritmu bude kladná iba vtedy, ak základ aj argument sú väčšie alebo menšie ako jedna; ak je porušená aspoň jedna podmienka, hodnota logaritmu bude záporná.
  • Ak je logaritmická funkcia aplikovaná na pravú a ľavú stranu nerovnosti a základ logaritmu je väčší ako jedna, potom sa znamienko nerovnosti zachová; inak sa to mení.

Vzorové problémy

Zvážme niekoľko možností použitia logaritmov a ich vlastností. Príklady s riešením rovníc:

Zvážte možnosť umiestniť logaritmus do mocniny:

  • Úloha 3. Vypočítajte 25^log 5(3). Riešenie: v podmienkach problému je zadanie podobné nasledujúcemu (5^2)^log5(3) alebo 5^(2 * log 5(3)). Napíšme to inak: 5^log 5(3*2), alebo druhú mocninu čísla ako argument funkcie možno zapísať ako druhú mocninu samotnej funkcie (5^log 5(3))^2. Použitím vlastností logaritmov sa tento výraz rovná 3^2. Odpoveď: ako výsledok výpočtu dostaneme 9.

Praktická aplikácia

Keďže ide o čisto matematický nástroj, zdá sa ďaleko od skutočného života, že logaritmus zrazu nadobudol veľký význam pre popis objektov v reálnom svete. Je ťažké nájsť vedu, kde sa nepoužíva. V plnej miere to platí nielen pre prírodné, ale aj humanitárne oblasti poznania.

Logaritmické závislosti

Tu je niekoľko príkladov numerických závislostí:

Mechanika a fyzika

Historicky sa mechanika a fyzika vždy rozvíjali pomocou matematických výskumných metód a zároveň slúžili ako stimul pre rozvoj matematiky vrátane logaritmov. Teória väčšiny fyzikálnych zákonov je napísaná v jazyku matematiky. Uveďme len dva príklady opisu fyzikálnych zákonov pomocou logaritmu.

Problém výpočtu takého zložitého množstva, ako je rýchlosť rakety, možno vyriešiť pomocou vzorca Tsiolkovského, ktorý položil základ pre teóriu prieskumu vesmíru:

V = I * ln (M1/M2), kde

  • V je konečná rýchlosť lietadla.
  • I – špecifický impulz motora.
  • M 1 – počiatočná hmotnosť rakety.
  • M 2 – výsledná hmotnosť.

Ďalší dôležitý príklad- to je použité vo vzorci iného veľkého vedca Maxa Plancka, ktorý slúži na vyhodnotenie rovnovážneho stavu v termodynamike.

S = k * ln (Ω), kde

  • S – termodynamická vlastnosť.
  • k – Boltzmannova konštanta.
  • Ω je štatistická váha rôznych stavov.

Chémia

Menej zrejmé je použitie vzorcov v chémii obsahujúcich pomer logaritmov. Uveďme len dva príklady:

  • Nernstova rovnica, stav redoxného potenciálu prostredia vo vzťahu k aktivite látok a rovnovážnej konštante.
  • Výpočet takých konštánt, ako je index autolýzy a kyslosť roztoku, sa tiež nezaobíde bez našej funkcie.

Psychológia a biológia

A vôbec nie je jasné, čo s tým má psychológia spoločné. Ukazuje sa, že silu vnemu táto funkcia dobre popisuje ako inverzný pomer hodnoty intenzity stimulu k nižšej hodnote intenzity.

Po vyššie uvedených príkladoch už nie je prekvapujúce, že téma logaritmov je v biológii široko používaná. O biologických formách zodpovedajúcich logaritmickým špirálam by sa dali písať celé zväzky.

Ostatné oblasti

Zdá sa, že existencia sveta je nemožná bez spojenia s touto funkciou a riadi všetky zákony. Najmä keď sú prírodné zákony spojené s geometrickým postupom. Stojí za to obrátiť sa na webovú stránku MatProfi a existuje veľa takýchto príkladov v nasledujúcich oblastiach činnosti:

Zoznam môže byť nekonečný. Po zvládnutí základných princípov tejto funkcie sa môžete ponoriť do sveta nekonečnej múdrosti.

Zachovanie vášho súkromia je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si naše postupy ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné údaje sú údaje, ktoré možno použiť na identifikáciu alebo kontaktovanie konkrétnej osoby.

Kedykoľvek nás budete kontaktovať, môžete byť požiadaní o poskytnutie svojich osobných údajov.

Nižšie sú uvedené niektoré príklady typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zhromažďovať rôzne informácie vrátane vášho mena, telefónneho čísla, e-mailovej adresy atď.

Ako používame vaše osobné údaje:

  • Osobné údaje, ktoré zhromažďujeme, nám umožňujú kontaktovať vás s jedinečnými ponukami, propagačnými akciami a inými udalosťami a pripravovanými udalosťami.
  • Z času na čas môžeme použiť vaše osobné údaje na zasielanie dôležitých upozornení a komunikácie.
  • Osobné údaje môžeme použiť aj na interné účely, ako je vykonávanie auditov, analýza údajov a rôzne výskumy, aby sme zlepšili služby, ktoré poskytujeme, a poskytli vám odporúčania týkajúce sa našich služieb.
  • Ak sa zúčastníte žrebovania o ceny, súťaže alebo podobnej propagačnej akcie, môžeme použiť informácie, ktoré nám poskytnete, na správu takýchto programov.

Sprístupnenie informácií tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby – v súlade so zákonom, súdnym konaním, v súdnom konaní a/alebo na základe verejných žiadostí alebo žiadostí vládnych orgánov na území Ruskej federácie – poskytnúť vaše osobné údaje. Môžeme tiež zverejniť informácie o vás, ak usúdime, že takéto zverejnenie je potrebné alebo vhodné na účely bezpečnosti, presadzovania práva alebo na iné účely verejného významu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušnú nástupnícku tretiu stranu.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj neoprávneným prístupom, zverejnením, zmenou a zničením.

Rešpektovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o štandardoch ochrany osobných údajov a bezpečnosti a prísne presadzujeme postupy ochrany osobných údajov.

\(a^(b)=c\) \(\šípka doľava\) \(\log_(a)(c)=b\)

Poďme si to vysvetliť jednoduchšie. Napríklad \(\log_(2)(8)\) sa rovná mocnine, na ktorú musí byť umocnený \(2\), aby ste dostali \(8\). Z toho je jasné, že \(\log_(2)(8)=3\).

Príklady:

\(\log_(5)(25)=2\)

pretože \(5^(2)=25\)

\(\log_(3)(81)=4\)

pretože \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

pretože \(2^(-5)=\)\(\frac(1)(32)\)

Argument a základ logaritmu

Každý logaritmus má nasledujúcu „anatómiu“:

Argument logaritmu sa zvyčajne zapisuje na jeho úrovni a základňa sa píše dolným indexom bližšie k znamienku logaritmu. A tento záznam znie takto: „logaritmus dvadsaťpäť na základ päť“.

Ako vypočítať logaritmus?

Ak chcete vypočítať logaritmus, musíte odpovedať na otázku: na akú moc by sa mala zvýšiť základňa, aby ste dostali argument?

Napríklad, vypočítajte logaritmus: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7)\) e) \(\log_(3)(\sqrt(3))\)

a) Na akú mocninu treba zvýšiť \(4\), aby ste dostali \(16\)? Očividne ten druhý. Preto:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Na akú mocninu sa musí zvýšiť \(\sqrt(5)\), aby sme dostali \(1\)? Aká sila robí ktorúkoľvek číslo jedna? Nula, samozrejme!

\(\log_(\sqrt(5))(1)=0\)

d) Na akú mocninu sa musí zvýšiť \(\sqrt(7)\), aby sa získal \(\sqrt(7)\)? Po prvé, akékoľvek číslo s prvou mocninou sa rovná samému sebe.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Na akú mocninu sa musí zvýšiť \(3\), aby sa získal \(\sqrt(3)\)? Z toho vieme, že ide o zlomkovú mocninu, čo znamená, že druhá odmocnina je mocninou \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Príklad : Vypočítajte logaritmus \(\log_(4\sqrt(2))(8)\)

Riešenie :

\(\log_(4\sqrt(2))(8)=x\)

Musíme nájsť hodnotu logaritmu, označme ho ako x. Teraz použijeme definíciu logaritmu:
\(\log_(a)(c)=b\) \(\Šípka doľava\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Čo spája \(4\sqrt(2)\) a \(8\)? Dve, ​​pretože obe čísla môžu byť reprezentované dvojkami:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Vľavo používame vlastnosti stupňa: \(a^(m)\cdot a^(n)=a^(m+n)\) a \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Základy sú rovnaké, prechádzame k rovnosti ukazovateľov

\(\frac(5x)(2)\) \(=3\)


Vynásobte obe strany rovnice \(\frac(2)(5)\)


Výsledný koreň je hodnota logaritmu

Odpoveď : \(\log_(4\sqrt(2))(8)=1,2\)

Prečo bol logaritmus vynájdený?

Aby sme to pochopili, vyriešme rovnicu: \(3^(x)=9\). Stačí priradiť \(x\), aby rovnica fungovala. Samozrejme, \(x=2\).

Teraz vyriešte rovnicu: \(3^(x)=8\).Čo sa rovná x? To je podstata.

Tí najmúdrejší povedia: "X je o niečo menej ako dva." Ako presne napísať toto číslo? Na zodpovedanie tejto otázky bol vynájdený logaritmus. Vďaka nemu tu môže byť odpoveď napísaná ako \(x=\log_(3)(8)\).

Chcem zdôrazniť, že \(\log_(3)(8)\), ako každý logaritmus je len číslo. Áno, vyzerá to nezvyčajne, ale je to krátke. Pretože ak by sme to chceli zapísať ako desatinné, vyzeralo by to takto: \(1.892789260714.....\)

Príklad : Vyriešte rovnicu \(4^(5x-4)=10\)

Riešenie :

\(4^(5x-4)=10\)

\(4^(5x-4)\) a \(10\) nemožno preniesť na rovnakú základňu. To znamená, že sa nezaobídete bez logaritmu.

Použime definíciu logaritmu:
\(a^(b)=c\) \(\šípka doľava\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Otočme rovnicu tak, aby X bolo vľavo

\(5x-4=\log_(4)(10)\)

Pred nami. Presuňme \(4\) doprava.

A nebojte sa logaritmu, zaobchádzajte s ním ako s obyčajným číslom.

\(5x=\log_(4)(10)+4\)

Rozdeľte rovnicu číslom 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Toto je náš koreň. Áno, vyzerá to nezvyčajne, ale nevyberajú si odpoveď.

Odpoveď : \(\frac(\log_(4)(10)+4)(5)\)

Desatinné a prirodzené logaritmy

Ako je uvedené v definícii logaritmu, jeho základom môže byť akékoľvek kladné číslo okrem jedného \((a>0, a\neq1)\). A medzi všetkými možnými základmi sú dve, ktoré sa vyskytujú tak často, že na logaritmy s nimi bol vynájdený špeciálny krátky zápis:

Prirodzený logaritmus: logaritmus, ktorého základom je Eulerovo číslo \(e\) (rovná sa približne \(2,7182818…\)) a logaritmus sa zapíše ako \(\ln(a)\).

teda \(\ln(a)\) je to isté ako \(\log_(e)(a)\)

Desatinný logaritmus: Logaritmus, ktorého základ je 10, sa zapíše \(\lg(a)\).

teda \(\lg(a)\) je to isté ako \(\log_(10)(a)\), kde \(a\) je nejaké číslo.

Základná logaritmická identita

Logaritmy majú veľa vlastností. Jedna z nich sa nazýva „základná logaritmická identita“ a vyzerá takto:

\(a^(\log_(a)(c))=c\)

Táto vlastnosť vyplýva priamo z definície. Pozrime sa, ako presne tento vzorec vznikol.

Pripomeňme si krátky zápis definície logaritmu:

ak \(a^(b)=c\), potom \(\log_(a)(c)=b\)

To znamená, že \(b\) je to isté ako \(\log_(a)(c)\). Potom môžeme do vzorca \(a^(b)=c\) namiesto \(b\) napísať \(\log_(a)(c)\). Ukázalo sa, že \(a^(\log_(a)(c))=c\) - hlavná logaritmická identita.

Môžete nájsť ďalšie vlastnosti logaritmov. S ich pomocou môžete zjednodušiť a vypočítať hodnoty výrazov pomocou logaritmov, ktoré je ťažké vypočítať priamo.

Príklad : Nájdite hodnotu výrazu \(36^(\log_(6)(5))\)

Riešenie :

Odpoveď : \(25\)

Ako napísať číslo ako logaritmus?

Ako bolo uvedené vyššie, každý logaritmus je len číslo. Platí to aj naopak: ľubovoľné číslo možno zapísať ako logaritmus. Napríklad vieme, že \(\log_(2)(4)\) sa rovná dvom. Potom namiesto dvoch môžete napísať \(\log_(2)(4)\).

Ale \(\log_(3)(9)\) sa tiež rovná \(2\), čo znamená, že môžeme písať aj \(2=\log_(3)(9)\) . Podobne s \(\log_(5)(25)\) a s \(\log_(9)(81)\) atď. To znamená, že sa ukazuje

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Ak teda potrebujeme, môžeme napísať dvojku ako logaritmus s ľubovoľným základom kdekoľvek (aj v rovnici, dokonca aj vo výraze, dokonca aj pri nerovnosti) - jednoducho napíšeme druhú mocninu základu ako argument.

Rovnako je to aj s trojkou – možno ju zapísať ako \(\log_(2)(8)\), alebo ako \(\log_(3)(27)\), alebo ako \(\log_(4)( 64) \)... Tu napíšeme základ v kocke ako argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

A so štyrmi:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

A s mínusom jedna:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1) (7)\) \(...\)

A s jednou tretinou:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Akékoľvek číslo \(a\) môže byť vyjadrené ako logaritmus so základom \(b\): \(a=\log_(b)(b^(a))\)

Príklad : Nájdite význam výrazu \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Riešenie :

Odpoveď : \(1\)