พิสูจน์ว่าเวกเตอร์เป็นพื้นฐานของปริภูมิสามมิติ มีการระบุเวกเตอร์


มอบหมายการทดสอบ

ภารกิจที่ 1 - 10 ให้เวกเตอร์

แสดงว่าเวกเตอร์เป็นพื้นฐานของปริภูมิสามมิติและค้นหาพิกัดของเวกเตอร์ตามเกณฑ์นี้:

ให้เวกเตอร์ ε 1 (3;1;6), ε 2 (-2;2;-3), ε 3 (-4;5;-1), X(3;0;1) จงแสดงว่าเวกเตอร์เป็นพื้นฐานของปริภูมิสามมิติและค้นหาพิกัดของเวกเตอร์ X บนพื้นฐานนี้

งานนี้ประกอบด้วยสองส่วน ก่อนอื่นคุณต้องตรวจสอบว่าเวกเตอร์เป็นฐานหรือไม่ เวกเตอร์จะสร้างพื้นฐานถ้าดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์เหล่านี้แตกต่างจากศูนย์ มิฉะนั้น เวกเตอร์จะไม่ใช่พื้นฐานและเวกเตอร์ X ไม่สามารถขยายบนพื้นฐานนี้ได้

∆ = 3*(2*(-1) - 5*(-3)) - -2*(1*(-1) - 5*6) + -4*(1*(-3) - 2*6) = 37

ลองคำนวณดีเทอร์มิแนนต์ของเมทริกซ์:

ดีเทอร์มิแนนต์ของเมทริกซ์คือ ∆ =37

เนื่องจากดีเทอร์มีแนนต์ไม่เป็นศูนย์ เวกเตอร์จึงก่อตัวเป็นฐาน ดังนั้น เวกเตอร์ X จึงสามารถขยายบนฐานนี้ได้ เหล่านั้น. มีตัวเลข α 1, α 2, α 3 ที่มีความเท่าเทียมกัน:

X = α 1 ε 1 + α 2 ε 2 + α 3 ε 3

ให้เราเขียนความเท่าเทียมกันนี้ในรูปแบบพิกัด:

(3;0;1) = α(3;1;6) + α(-2;2;-3) + α(-4;5;-1)

เมื่อใช้คุณสมบัติของเวกเตอร์ เราจะได้ความเท่าเทียมกันดังต่อไปนี้:

(3;0;1) = (3α 1 ;1α 1 ;6α 1 ;) + (-2α 2 ;2α 2 ;-3α 2 ;) + (-4α 3 ;5α 3 ;-1α 3 ;)

(3;0;1) = (3α 1 -2α 2 -4α 3 ;1α 1 + 2α 2 + 5α 3 ;6α 1 -3α 2 -1α 3)

โดยคุณสมบัติของความเท่าเทียมกันของเวกเตอร์ที่เรามี:

3α 1 -2α 2 -4α 3 = 3

1α 1 + 2α 2 + 5α 3 = 0

6α 1 -3α 2 -1α 3 = 1 เราแก้ระบบสมการผลลัพธ์วิธีเกาส์เซียน หรือ.

วิธีการของแครมเมอร์

X = ε 1 + 2ε 2 -ε 3

ได้รับโซลูชันและประมวลผลโดยใช้บริการ:

พิกัดเวกเตอร์เป็นพื้นฐาน

นอกจากปัญหานี้แล้ว พวกเขายังช่วยแก้ไข:

การแก้สมการเมทริกซ์

วิธีแครมเมอร์

วิธีเกาส์

เมทริกซ์ผกผันโดยใช้วิธี Jordano-Gauss

เมทริกซ์ผกผันผ่านการเติมพีชคณิต

การคูณเมทริกซ์ออนไลน์พื้นฐานของพื้นที่
พวกเขาเรียกระบบเวกเตอร์ดังกล่าวว่าเวกเตอร์อื่นๆ ทั้งหมดในอวกาศสามารถแสดงเป็นผลรวมเชิงเส้นของเวกเตอร์ที่รวมอยู่ในฐานได้ ในทางปฏิบัติ ทั้งหมดนี้ทำได้ค่อนข้างง่าย ตามกฎแล้วจะมีการตรวจสอบพื้นฐานบนระนาบหรือในอวกาศและด้วยเหตุนี้คุณจะต้องค้นหาดีเทอร์มิแนนต์ของเมทริกซ์ลำดับที่สองและสามที่ประกอบด้วยพิกัดเวกเตอร์ ด้านล่างมีการเขียนแผนผัง

เงื่อนไขที่เวกเตอร์เป็นพื้นฐาน ถึง
ขยายเวกเตอร์ b ไปเป็นเวกเตอร์ฐาน e,e...,e[n] มีความจำเป็นต้องค้นหาสัมประสิทธิ์ x, ..., x[n] ซึ่งผลรวมเชิงเส้นของเวกเตอร์ e,e...,e[n] เท่ากับ เวกเตอร์
x1*e+ ... + x[n]*e[n] = ข.

เมื่อต้องการทำเช่นนี้ ควรแปลงสมการเวกเตอร์เป็นระบบสมการเชิงเส้นและควรหาคำตอบ นี่ยังค่อนข้างง่ายที่จะนำไปใช้
เรียกค่าสัมประสิทธิ์ที่พบ x, ..., x[n] พิกัดของเวกเตอร์ b บนพื้นฐานอี,อี...,อี[n].
เรามาดูด้านการปฏิบัติของหัวข้อกันดีกว่า

การสลายตัวของเวกเตอร์ให้เป็นเวกเตอร์พื้นฐาน

ภารกิจที่ 1 ตรวจสอบว่าเวกเตอร์ a1, a2 ประกอบเป็นฐานบนระนาบหรือไม่

1) ก1 (3; 5), ก2 (4; 2)
วิธีแก้ไข: เราเขียนดีเทอร์มิแนนต์จากพิกัดของเวกเตอร์แล้วคำนวณ


ปัจจัยกำหนดไม่เป็นศูนย์, เพราะฉะนั้น เวกเตอร์มีความเป็นอิสระเชิงเส้น ซึ่งหมายความว่าพวกมันก่อตัวเป็นพื้นฐาน.

2) เอ1 (2;-3), เอ2 (5;-1)
วิธีแก้: เราคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยเวกเตอร์

ดีเทอร์มิแนนต์มีค่าเท่ากับ 13 (ไม่เท่ากับศูนย์) - จากนี้จึงเป็นไปตามที่เวกเตอร์ a1, a2 เป็นพื้นฐานบนระนาบ

---=================---

ลองดูตัวอย่างทั่วไปจากโปรแกรม MAUP ในสาขาวิชา "คณิตศาสตร์ขั้นสูง"

ภารกิจที่ 2 แสดงว่าเวกเตอร์ a1, a2, a3 เป็นพื้นฐานของปริภูมิเวกเตอร์สามมิติ และขยายเวกเตอร์ b ตามพื้นฐานนี้ (ใช้วิธีแครเมอร์เมื่อแก้ระบบสมการพีชคณิตเชิงเส้น)
1) a1 (3; 1; 5), a2 (3; 2; 8), a3 (0; 1; 2), b (−3; 1; 2).
วิธีแก้: ขั้นแรก พิจารณาระบบของเวกเตอร์ a1, a2, a3 และตรวจสอบดีเทอร์มีแนนต์ของเมทริกซ์ A

สร้างขึ้นจากเวกเตอร์ที่ไม่ใช่ศูนย์ เมทริกซ์ประกอบด้วยองค์ประกอบที่เป็นศูนย์หนึ่งรายการ ดังนั้นจึงเหมาะสมกว่าในการคำนวณดีเทอร์มิแนนต์เป็นกำหนดการในคอลัมน์แรกหรือแถวที่สาม

จากการคำนวณเราพบว่าดีเทอร์มิแนนต์แตกต่างจากศูนย์ดังนั้น เวกเตอร์ a1, a2, a3 มีความเป็นอิสระเชิงเส้น.
ตามคำนิยาม เวกเตอร์จะสร้างพื้นฐานใน R3 ลองเขียนตารางเวลาของเวกเตอร์ b กัน

เวกเตอร์จะเท่ากันเมื่อพิกัดที่สอดคล้องกันเท่ากัน
ดังนั้นจากสมการเวกเตอร์เราได้ระบบสมการเชิงเส้น

มาแก้ SLAE กัน วิธีการของแครมเมอร์- เมื่อต้องการทำเช่นนี้ ให้เขียนระบบสมการในรูปแบบ

ดีเทอร์มิแนนต์หลักของ SLAE จะเท่ากับดีเทอร์มิแนนต์ที่ประกอบด้วยเวกเตอร์พื้นฐานเสมอ

ดังนั้นในทางปฏิบัติจะไม่นับสองครั้ง ในการค้นหาปัจจัยเสริม เราใส่คอลัมน์ที่มีพจน์อิสระเข้ามาแทนที่แต่ละคอลัมน์ของปัจจัยหลัก ปัจจัยกำหนดคำนวณโดยใช้กฎสามเหลี่ยม



ลองแทนที่ดีเทอร์มิแนนต์ที่พบลงในสูตรของแครเมอร์



ดังนั้น การขยายตัวของเวกเตอร์ b ในรูปของฐานจะมีรูปแบบ b=-4a1+3a2-a3 พิกัดของเวกเตอร์ b บนพื้นฐาน a1, a2, a3 จะเป็น (-4,3, 1)

2)a1 (1; -5; 2), a2 (2; 3; 0), a3 (1; -1; 1), ข (3; 5; 1)
วิธีแก้ปัญหา: เราตรวจสอบเวกเตอร์เป็นพื้นฐาน - เราเขียนดีเทอร์มิแนนต์จากพิกัดของเวกเตอร์แล้วคำนวณ

ดังนั้นดีเทอร์มิแนนต์จึงไม่เท่ากับศูนย์ เวกเตอร์เป็นพื้นฐานในอวกาศ- ยังคงต้องค้นหาตารางเวลาของเวกเตอร์ b ผ่านพื้นฐานนี้ เมื่อต้องการทำเช่นนี้ เราเขียนสมการเวกเตอร์

และแปลงเป็นระบบสมการเชิงเส้น

เราเขียนสมการเมทริกซ์

ต่อไป สำหรับสูตรของแครเมอร์ เราจะหาปัจจัยเสริม



เราใช้สูตรของแครเมอร์



ดังนั้นเวกเตอร์ที่กำหนด b มีตารางเวลาผ่านเวกเตอร์ฐานสองตัว b=-2a1+5a3 และพิกัดของมันบนฐานเท่ากับ b(-2,0, 5)

การพึ่งพาเชิงเส้นและความเป็นอิสระเชิงเส้นของเวกเตอร์
พื้นฐานของเวกเตอร์ ระบบพิกัดอัฟฟิน

มีรถเข็นพร้อมช็อคโกแลตอยู่ในหอประชุม และผู้เยี่ยมชมทุกคนในวันนี้จะได้รับคู่รักแสนหวาน - เรขาคณิตเชิงวิเคราะห์พร้อมพีชคณิตเชิงเส้น บทความนี้จะพูดถึงสองส่วนของคณิตศาสตร์ขั้นสูงในคราวเดียว และเราจะดูว่าพวกมันอยู่ร่วมกันอย่างไรในกระดาษห่อเดียว พักสมอง กิน Twix! ...บ้าเอ๊ย ไร้สาระมากมาย แม้ว่าฉันจะไม่ได้คะแนน แต่สุดท้ายแล้วคุณควรมีทัศนคติเชิงบวกต่อการเรียน

การพึ่งพาเชิงเส้นของเวกเตอร์, ความเป็นอิสระของเวกเตอร์เชิงเส้น, พื้นฐานของเวกเตอร์และคำศัพท์อื่นๆ ไม่เพียงแต่มีการตีความทางเรขาคณิตเท่านั้น แต่เหนือสิ่งอื่นใดคือความหมายเชิงพีชคณิต แนวคิดของ "เวกเตอร์" จากมุมมองของพีชคณิตเชิงเส้นไม่ใช่เวกเตอร์ "ธรรมดา" เสมอไปที่เราสามารถพรรณนาบนเครื่องบินหรือในอวกาศ คุณไม่จำเป็นต้องมองหาข้อพิสูจน์มากนัก ลองวาดเวกเตอร์ของปริภูมิห้ามิติ - หรือเวกเตอร์สภาพอากาศ ซึ่งผมเพิ่งไปที่ Gismeteo เพื่อหาอุณหภูมิและความดันบรรยากาศ ตามลำดับ แน่นอนว่าตัวอย่างนี้ไม่ถูกต้องจากมุมมองของคุณสมบัติของปริภูมิเวกเตอร์ แต่ถึงกระนั้นก็ไม่มีใครห้ามไม่ให้ทำให้พารามิเตอร์เหล่านี้เป็นเวกเตอร์อย่างเป็นทางการ ลมหายใจแห่งฤดูใบไม้ร่วง...

ไม่ ฉันจะไม่ทำให้คุณเบื่อกับทฤษฎี สเปซเวกเตอร์เชิงเส้น ภารกิจก็คือต้องทำ เข้าใจคำจำกัดความและทฤษฎีบท คำศัพท์ใหม่ (การพึ่งพาเชิงเส้น ความเป็นอิสระ ผลรวมเชิงเส้น พื้นฐาน ฯลฯ) นำไปใช้กับเวกเตอร์ทั้งหมดจากมุมมองพีชคณิต แต่จะมีตัวอย่างเรขาคณิตให้ ดังนั้นทุกอย่างจึงเรียบง่าย เข้าถึงได้ และชัดเจน นอกจากปัญหาเรขาคณิตวิเคราะห์แล้ว เรายังพิจารณาปัญหาพีชคณิตทั่วไปด้วย หากต้องการเชี่ยวชาญเนื้อหาขอแนะนำให้ทำความคุ้นเคยกับบทเรียนต่างๆ เวกเตอร์สำหรับหุ่นจำลองและ จะคำนวณดีเทอร์มิแนนต์ได้อย่างไร?

การพึ่งพาเชิงเส้นและความเป็นอิสระของเวกเตอร์ระนาบ
พื้นฐานระนาบและระบบพิกัดสัมพันธ์

ลองพิจารณาระนาบของโต๊ะคอมพิวเตอร์ของคุณ (แค่โต๊ะ โต๊ะข้างเตียง พื้น เพดาน และอื่นๆ ตามที่คุณต้องการ) งานจะประกอบด้วยการดำเนินการดังต่อไปนี้:

1) เลือกพื้นฐานเครื่องบิน- พูดโดยคร่าวๆ โต๊ะจะมีความยาวและความกว้าง ดังนั้นจึงเป็นเรื่องง่ายที่ต้องใช้เวกเตอร์สองตัวเพื่อสร้างฐาน เวกเตอร์หนึ่งตัวไม่เพียงพออย่างชัดเจน เวกเตอร์สามตัวนั้นมากเกินไป

2) ขึ้นอยู่กับพื้นฐานที่เลือก กำหนดระบบพิกัด(ตารางพิกัด) เพื่อกำหนดพิกัดให้กับวัตถุทั้งหมดบนโต๊ะ

ไม่ต้องแปลกใจ ในตอนแรกคำอธิบายจะอยู่ที่ปลายนิ้ว ยิ่งไปกว่านั้นเกี่ยวกับตัวคุณ กรุณาวาง นิ้วชี้ซ้ายที่ขอบโต๊ะเพื่อมองจอภาพ นี่จะเป็นเวกเตอร์ ตอนนี้สถานที่ นิ้วก้อยขวาบนขอบโต๊ะในลักษณะเดียวกัน - เพื่อให้หันไปที่หน้าจอมอนิเตอร์ นี่จะเป็นเวกเตอร์ ยิ้มสิ คุณดูดีมาก! เราจะพูดอะไรเกี่ยวกับเวกเตอร์ได้บ้าง? เวกเตอร์ข้อมูล คอลลิเนียร์ซึ่งหมายความว่า เชิงเส้นแสดงออกผ่านกันและกัน:
หรือในทางกลับกัน: โดยที่ตัวเลขบางตัวแตกต่างจากศูนย์

คุณสามารถเห็นภาพการกระทำนี้ในชั้นเรียน เวกเตอร์สำหรับหุ่นจำลองโดยที่ฉันอธิบายกฎสำหรับการคูณเวกเตอร์ด้วยตัวเลข

นิ้วของคุณจะวางรากฐานบนระนาบของโต๊ะคอมพิวเตอร์หรือไม่? เห็นได้ชัดว่าไม่ เวกเตอร์คอลลิเนียร์เคลื่อนที่ไปมา ตามลำพังทิศทาง และระนาบมีความยาวและความกว้าง

เวกเตอร์ดังกล่าวเรียกว่า ขึ้นอยู่กับเชิงเส้น.

อ้างอิง: คำว่า "เชิงเส้น" "เชิงเส้น" แสดงถึงความจริงที่ว่าในสมการทางคณิตศาสตร์และนิพจน์นั้นไม่มีกำลังสอง ลูกบาศก์ กำลังอื่น ลอการิทึม ไซน์ ฯลฯ มีเพียงนิพจน์และการขึ้นต่อกันเชิงเส้น (ระดับที่ 1) เท่านั้น

เวกเตอร์ระนาบสองตัว ขึ้นอยู่กับเชิงเส้นถ้าเพียงแต่ว่าพวกมันอยู่ในแนวเดียวกัน.

ไขว้นิ้วบนโต๊ะเพื่อให้มีมุมระหว่างนิ้วทั้งสองข้างที่ไม่ใช่ 0 หรือ 180 องศา เวกเตอร์ระนาบสองตัวเชิงเส้น ไม่ขึ้นอยู่กับว่าพวกมันไม่อยู่ในแนวเดียวกันหรือไม่- ดังนั้นจึงได้รับพื้นฐาน ไม่จำเป็นต้องอับอายที่พื้นฐานกลายเป็น "เบ้" ด้วยเวกเตอร์ที่ไม่ตั้งฉากซึ่งมีความยาวต่างกัน ในไม่ช้าเราจะเห็นว่าไม่เพียงแต่มุม 90 องศาเท่านั้นที่เหมาะกับการก่อสร้าง และไม่เพียงแต่เวกเตอร์หน่วยที่มีความยาวเท่ากันเท่านั้น

ใดๆเวกเตอร์เครื่องบิน วิธีเดียวเท่านั้นได้ถูกขยายออกไปตามพื้นฐาน:
, จำนวนจริงอยู่ที่ไหน ตัวเลขที่ถูกเรียกว่า พิกัดเวกเตอร์ในพื้นฐานนี้

ยังได้กล่าวอีกว่า เวกเตอร์นำเสนอเป็น การรวมกันเชิงเส้นเวกเตอร์พื้นฐาน- นั่นคือการแสดงออกที่เรียกว่า การสลายตัวของเวกเตอร์ตามพื้นฐานวิธีเกาส์เซียน การรวมกันเชิงเส้นเวกเตอร์พื้นฐาน

ตัวอย่างเช่น เราสามารถพูดได้ว่าเวกเตอร์ถูกสลายไปตามพื้นฐานออร์โธนอร์มอลของระนาบ หรือเราสามารถพูดได้ว่าเวกเตอร์นั้นแสดงเป็นผลรวมเชิงเส้นของเวกเตอร์

มากำหนดกัน คำจำกัดความของพื้นฐานอย่างเป็นทางการ: พื้นฐานของเครื่องบินเรียกว่าคู่ของเวกเตอร์อิสระเชิงเส้น (ไม่ใช่เชิงเส้น) , ในขณะที่ ใดๆเวกเตอร์ระนาบคือการรวมกันเชิงเส้นของเวกเตอร์พื้นฐาน

จุดสำคัญของคำจำกัดความก็คือความจริงที่ว่าเวกเตอร์นั้นถูกถ่าย ในลำดับที่แน่นอน- ฐาน – นี่คือสองฐานที่แตกต่างกันโดยสิ้นเชิง! ตามที่กล่าวไว้คุณไม่สามารถเปลี่ยนนิ้วก้อยของมือซ้ายแทนที่นิ้วก้อยของมือขวาได้

เราได้หาพื้นฐานแล้ว แต่ยังไม่เพียงพอในการตั้งค่าตารางพิกัดและกำหนดพิกัดให้กับแต่ละรายการบนโต๊ะคอมพิวเตอร์ของคุณ ทำไมมันไม่พอล่ะ? เวกเตอร์นั้นฟรีและเดินไปทั่วทั้งเครื่องบิน แล้วคุณจะกำหนดพิกัดให้กับจุดสกปรกเล็กๆ น้อยๆ บนโต๊ะที่เหลือจากวันหยุดสุดสัปดาห์ได้อย่างไร? จำเป็นต้องมีจุดเริ่มต้น และจุดสังเกตดังกล่าวเป็นจุดที่ทุกคนคุ้นเคย - ที่มาของพิกัด มาทำความเข้าใจระบบพิกัดกันดีกว่า:

ฉันจะเริ่มต้นด้วยระบบ "โรงเรียน" อยู่ในบทเรียนเบื้องต้นแล้ว เวกเตอร์สำหรับหุ่นจำลองฉันเน้นความแตกต่างบางประการระหว่างระบบพิกัดสี่เหลี่ยมและพื้นฐานออร์โธนอร์มอล นี่คือภาพมาตรฐาน:

เมื่อพวกเขาพูดถึง ระบบพิกัดสี่เหลี่ยมจากนั้นส่วนใหญ่มักจะหมายถึงจุดกำเนิด พิกัดแกน และมาตราส่วนตามแกน ลองพิมพ์ "ระบบพิกัดสี่เหลี่ยม" ลงในเครื่องมือค้นหา แล้วคุณจะเห็นว่าหลายแหล่งจะบอกคุณเกี่ยวกับแกนพิกัดที่คุ้นเคยตั้งแต่ชั้นประถมศึกษาปีที่ 5-6 และวิธีการพล็อตจุดบนเครื่องบิน

ในทางกลับกัน ดูเหมือนว่าระบบพิกัดสี่เหลี่ยมสามารถกำหนดได้ในแง่ของพื้นฐานออร์โธนอร์มอล และนั่นเกือบจะเป็นความจริง ถ้อยคำมีดังนี้:

ต้นทาง, และ ออร์โธนอร์มอลมีการกำหนดพื้นฐานไว้แล้ว ระบบพิกัดระนาบสี่เหลี่ยมคาร์ทีเซียน - นั่นก็คือระบบพิกัดสี่เหลี่ยม อย่างแน่นอนถูกกำหนดโดยเวกเตอร์มุมฉากจุดเดียวและสองหน่วย นั่นคือสาเหตุที่คุณเห็นภาพวาดที่ฉันให้ไว้ข้างต้น - ในปัญหาทางเรขาคณิต มักจะวาดทั้งเวกเตอร์และแกนพิกัด (แต่ไม่เสมอไป)

ฉันคิดว่าทุกคนเข้าใจว่าการใช้จุด (ต้นกำเนิด) และพื้นฐานออร์โธนอร์มอล จุดใดๆ บนเครื่องบินและเวกเตอร์ใดๆ บนเครื่องบินสามารถกำหนดพิกัดได้ หากพูดเป็นรูปเป็นร่างว่า “ทุกสิ่งบนเครื่องบินสามารถนับได้”

เวกเตอร์พิกัดจำเป็นต้องเป็นหน่วยหรือไม่? ไม่ พวกเขาสามารถมีความยาวไม่เป็นศูนย์ได้ตามใจชอบ พิจารณาจุดและเวกเตอร์มุมฉากสองตัวที่มีความยาวไม่เป็นศูนย์ตามอำเภอใจ:


พื้นฐานดังกล่าวเรียกว่า ตั้งฉาก- ต้นกำเนิดของพิกัดกับเวกเตอร์ถูกกำหนดโดยตารางพิกัด และจุดใดๆ บนระนาบ เวกเตอร์ใดๆ ก็มีพิกัดของมันบนพื้นฐานที่กำหนด ตัวอย่างเช่นหรือ. ความไม่สะดวกที่เห็นได้ชัดคือเวกเตอร์พิกัด ในกรณีทั่วไปมีความยาวต่างกันนอกจากความสามัคคี หากความยาวเท่ากับความสามัคคี ก็จะได้ค่าพื้นฐานออร์โธนอร์มอลตามปกติ

- บันทึก : ในลักษณะตั้งฉากและด้านล่างในฐานสัมพันธ์ของระนาบและที่ว่าง ให้พิจารณาหน่วยตามแนวแกน มีเงื่อนไข- ตัวอย่างเช่น หนึ่งหน่วยตามแกน x มี 4 ซม. หนึ่งหน่วยตามแกนกำหนดมี 2 ซม. ข้อมูลนี้เพียงพอที่จะแปลงพิกัด "ที่ไม่ได้มาตรฐาน" เป็น "เซนติเมตรปกติของเรา" หากจำเป็น

และคำถามที่สอง ซึ่งมีคำตอบไปแล้ว คือมุมระหว่างเวกเตอร์ฐานจะต้องเท่ากับ 90 องศาหรือไม่? เลขที่! ตามที่ระบุไว้ในคำจำกัดความ เวกเตอร์พื้นฐานจะต้องเป็น ไม่ใช่คอลลิเนียร์เท่านั้น- ดังนั้น มุมสามารถเป็นอะไรก็ได้ยกเว้น 0 ถึง 180 องศา

จุดบนเครื่องบินเรียกว่า ต้นทาง, และ ไม่ใช่คอลลิเนียร์เวกเตอร์, , ชุด ระบบพิกัดระนาบอัฟฟิน :


บางครั้งเรียกว่าระบบพิกัดดังกล่าว เฉียงระบบ. ตามตัวอย่าง ภาพวาดจะแสดงจุดและเวกเตอร์:

ดังที่คุณเข้าใจ ระบบพิกัดอัฟฟินนั้นสะดวกน้อยกว่า สูตรสำหรับความยาวของเวกเตอร์และเซ็กเมนต์ซึ่งเราพูดคุยไปแล้วในส่วนที่สองของบทเรียนนั้นใช้ไม่ได้ผล เวกเตอร์สำหรับหุ่นจำลอง,สูตรอร่อยมากมายที่เกี่ยวข้อง ผลคูณสเกลาร์ของเวกเตอร์- แต่กฎสำหรับการบวกเวกเตอร์และการคูณเวกเตอร์ด้วยตัวเลข สูตรสำหรับการแบ่งส่วนในส่วนนี้ รวมถึงปัญหาประเภทอื่น ๆ ที่เราจะพิจารณาในไม่ช้านี้นั้นถูกต้อง

และข้อสรุปก็คือ กรณีพิเศษที่สะดวกที่สุดของระบบพิกัดแอฟฟินคือระบบสี่เหลี่ยมคาร์ทีเซียน นั่นเป็นเหตุผลว่าทำไมคุณถึงต้องพบเธอบ่อยที่สุดที่รัก ...อย่างไรก็ตาม ทุกสิ่งในชีวิตนี้มีความสัมพันธ์กัน มีหลายสถานการณ์ที่มีมุมเอียง (หรือมุมอื่น ๆ เช่น ขั้วโลก) ระบบพิกัด และหุ่นยนต์ฮิวแมนนอยด์อาจจะชอบระบบแบบนี้ =)

เรามาดูส่วนที่ใช้งานได้จริงกันดีกว่า ปัญหาทั้งหมดในบทเรียนนี้ใช้ได้กับทั้งระบบพิกัดสี่เหลี่ยมและกรณีความสัมพันธ์ทั่วไป ไม่มีอะไรซับซ้อนที่นี่แม้แต่เด็กนักเรียนก็สามารถเข้าถึงเนื้อหาทั้งหมดได้

จะตรวจสอบความเป็นเส้นตรงของเวกเตอร์ระนาบได้อย่างไร?

สิ่งทั่วไป เพื่อให้ได้เวกเตอร์ระนาบสองตัว อยู่ในแนวเดียวกัน จึงมีความจำเป็นและเพียงพอที่พิกัดที่สอดคล้องกันจะเป็นสัดส่วนโดยพื้นฐานแล้ว นี่คือรายละเอียดแบบประสานงานโดยพิกัดของความสัมพันธ์ที่ชัดเจน

ตัวอย่างที่ 1

ก) ตรวจสอบว่าเวกเตอร์อยู่ในแนวเดียวกันหรือไม่ .
b) เวกเตอร์สร้างพื้นฐานหรือไม่? ?

สารละลาย:
ก) ให้เราดูว่ามีเวกเตอร์หรือไม่ ค่าสัมประสิทธิ์สัดส่วนเพื่อให้มีความเท่าเทียมกัน:

ฉันจะบอกคุณอย่างแน่นอนเกี่ยวกับการใช้กฎนี้ในรูปแบบ "ฟุ่มเฟือย" ซึ่งใช้ได้ผลค่อนข้างดีในทางปฏิบัติ แนวคิดคือสร้างสัดส่วนทันทีและดูว่าถูกต้องหรือไม่:

เรามาสร้างสัดส่วนจากอัตราส่วนของพิกัดที่สอดคล้องกันของเวกเตอร์กัน:

มาย่อให้สั้นลง:
ดังนั้นพิกัดที่สอดคล้องกันจึงเป็นสัดส่วนดังนั้น

ความสัมพันธ์สามารถทำในทางกลับกันได้ นี่เป็นตัวเลือกที่เทียบเท่า:

สำหรับการทดสอบตัวเอง คุณสามารถใช้ข้อเท็จจริงที่ว่าเวกเตอร์คอลลิเนียร์แสดงเป็นเส้นตรงผ่านกันและกันได้ ในกรณีนี้ ความเท่าเทียมกันเกิดขึ้น - ความถูกต้องของพวกมันสามารถตรวจสอบได้อย่างง่ายดายผ่านการดำเนินการเบื้องต้นด้วยเวกเตอร์:

b) เวกเตอร์ระนาบสองตัวจะสร้างฐานหากพวกมันไม่อยู่ในแนวเดียวกัน (อิสระเชิงเส้น) เราตรวจสอบเวกเตอร์เพื่อหาความเป็นเชิงเส้น - มาสร้างระบบกันเถอะ:

จากสมการแรกเป็นไปตามนั้น จากสมการที่สองเป็นไปตามนั้น ซึ่งหมายถึง ระบบไม่สอดคล้องกัน(ไม่มีวิธีแก้ปัญหา) ดังนั้นพิกัดที่สอดคล้องกันของเวกเตอร์จึงไม่เป็นสัดส่วน

บทสรุป: เวกเตอร์มีความเป็นอิสระเชิงเส้นและเป็นพื้นฐาน

โซลูชันเวอร์ชันที่เรียบง่ายมีลักษณะดังนี้:

ลองสร้างสัดส่วนจากพิกัดที่สอดคล้องกันของเวกเตอร์กัน :
ซึ่งหมายความว่าเวกเตอร์เหล่านี้มีความเป็นอิสระเชิงเส้นและเป็นฐาน

โดยทั่วไปแล้ว ตัวเลือกนี้จะไม่ถูกปฏิเสธโดยผู้ตรวจสอบ แต่เกิดปัญหาในกรณีที่พิกัดบางพิกัดมีค่าเท่ากับศูนย์ แบบนี้: - หรือเช่นนี้: - หรือเช่นนี้: - ทำงานตามสัดส่วนที่นี่ได้อย่างไร? (อันที่จริงคุณไม่สามารถหารด้วยศูนย์ได้) ด้วยเหตุนี้ฉันจึงเรียกวิธีแก้ปัญหาแบบง่ายว่า "foppish"

คำตอบ:ก) , ข) แบบฟอร์ม

ตัวอย่างเชิงสร้างสรรค์เล็กๆ น้อยๆ สำหรับโซลูชันของคุณเอง:

ตัวอย่างที่ 2

เวกเตอร์มีค่าเท่ากับพารามิเตอร์เท่าใด พวกเขาจะเรียงกันไหม?

ในสารละลายตัวอย่าง พารามิเตอร์จะพบได้จากสัดส่วน

มีวิธีพีชคณิตที่หรูหราในการตรวจสอบเวกเตอร์เพื่อหาความสอดคล้องกัน มาจัดระบบความรู้ของเราและเพิ่มเป็นจุดที่ห้า:

สำหรับเวกเตอร์ระนาบสองตัว ข้อความต่อไปนี้จะเทียบเท่ากัน:

2) เวกเตอร์เป็นพื้นฐาน
3) เวกเตอร์ไม่เป็นเส้นตรง

+ 5) ดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์เหล่านี้ไม่ใช่ศูนย์.

ตามลำดับ ข้อความตรงข้ามต่อไปนี้เทียบเท่ากัน:
1) เวกเตอร์ขึ้นอยู่กับเชิงเส้น
2) เวกเตอร์ไม่ได้สร้างพื้นฐาน
3) เวกเตอร์อยู่ในแนวเดียวกัน;
4) เวกเตอร์สามารถแสดงเป็นเส้นตรงผ่านกันและกัน
+ 5) ดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์เหล่านี้มีค่าเท่ากับศูนย์.

ฉันหวังเป็นอย่างยิ่งว่าตอนนี้คุณจะเข้าใจข้อกำหนดและข้อความทั้งหมดที่คุณพบแล้ว

มาดูประเด็นที่ห้าใหม่ให้ละเอียดยิ่งขึ้น: เวกเตอร์ระนาบสองอัน อยู่ในแนวเดียวกันก็ต่อเมื่อดีเทอร์มีแนนต์ประกอบด้วยพิกัดของเวกเตอร์ที่กำหนดมีค่าเท่ากับศูนย์- แน่นอนว่าหากต้องการใช้ฟีเจอร์นี้ คุณจะต้องสามารถทำได้ ค้นหาปัจจัยกำหนด.

มาตัดสินใจกันตัวอย่างที่ 1 ในวิธีที่สอง:

ก) ให้เราคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์ :
, ซึ่งหมายความว่าเวกเตอร์เหล่านี้อยู่ในแนวเดียวกัน

b) เวกเตอร์ระนาบสองตัวจะสร้างฐานหากพวกมันไม่อยู่ในแนวเดียวกัน (อิสระเชิงเส้น) ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์กัน :
ซึ่งหมายความว่าเวกเตอร์มีความเป็นอิสระเชิงเส้นและเป็นพื้นฐาน

คำตอบ:ก) , ข) แบบฟอร์ม

มันดูกะทัดรัดและสวยกว่าโซลูชันที่มีสัดส่วนมาก

ด้วยความช่วยเหลือของวัสดุที่พิจารณา มันเป็นไปได้ที่จะสร้างไม่เพียงแต่ความเป็นเส้นตรงของเวกเตอร์เท่านั้น แต่ยังพิสูจน์ความขนานของเซ็กเมนต์และเส้นตรงได้ด้วย ลองพิจารณาปัญหาสองสามประการเกี่ยวกับรูปทรงเรขาคณิตเฉพาะกัน

ตัวอย่างที่ 3

จุดยอดของรูปสี่เหลี่ยมจะได้รับ พิสูจน์ว่ารูปสี่เหลี่ยมขนมเปียกปูนเป็นรูปสี่เหลี่ยมด้านขนาน

การพิสูจน์: ไม่จำเป็นต้องสร้างภาพวาดในปัญหา เนื่องจากการแก้ปัญหาจะเป็นการวิเคราะห์ล้วนๆ จำคำจำกัดความของสี่เหลี่ยมด้านขนาน:
สี่เหลี่ยมด้านขนาน รูปสี่เหลี่ยมที่มีด้านตรงข้ามขนานกันเป็นคู่เรียกว่า

ดังนั้นจึงจำเป็นต้องพิสูจน์:
1) ความขนานของด้านตรงข้ามและ;
2) ความขนานของด้านตรงข้าม และ

เราพิสูจน์:

1) ค้นหาเวกเตอร์:


2) ค้นหาเวกเตอร์:

ผลลัพธ์ที่ได้คือเวกเตอร์เดียวกัน (“ตามโรงเรียน” - เวกเตอร์เท่ากัน) Collinearity ค่อนข้างชัดเจน แต่จะดีกว่าถ้าทำการตัดสินใจให้ชัดเจนและมีการจัดเตรียมไว้จะดีกว่า ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์:
ซึ่งหมายความว่าเวกเตอร์เหล่านี้เป็นเส้นตรง และ

บทสรุป: ด้านตรงข้ามของรูปสี่เหลี่ยมขนมเปียกปูนขนานกันเป็นคู่ๆ ซึ่งหมายความว่าเป็นรูปสี่เหลี่ยมด้านขนานตามคำนิยาม Q.E.D.

ตัวเลขที่ดีและแตกต่างมากขึ้น:

ตัวอย่างที่ 4

จุดยอดของรูปสี่เหลี่ยมจะได้รับ พิสูจน์ว่ารูปสี่เหลี่ยมเป็นรูปสี่เหลี่ยมคางหมู

สำหรับการกำหนดหลักฐานที่เข้มงวดมากขึ้น แน่นอนว่าจะดีกว่าถ้าได้คำจำกัดความของสี่เหลี่ยมคางหมู แต่ก็เพียงพอแล้วที่จะจำไว้ว่ามันมีลักษณะอย่างไร

นี่เป็นงานสำหรับคุณที่จะแก้ไขด้วยตัวเอง วิธีแก้ปัญหาแบบสมบูรณ์ในตอนท้ายของบทเรียน

และตอนนี้ก็ถึงเวลาที่จะค่อยๆ เคลื่อนตัวจากเครื่องบินสู่อวกาศ:

จะตรวจสอบความเป็นเส้นตรงของเวกเตอร์อวกาศได้อย่างไร?

กฎนี้คล้ายกันมาก เพื่อให้เวกเตอร์อวกาศสองตัวขนานกัน พิกัดที่สอดคล้องกันของเวกเตอร์เหล่านั้นจะต้องเป็นสัดส่วนกันจึงจำเป็นและเพียงพอ.

ตัวอย่างที่ 5

ค้นหาว่าเวกเตอร์อวกาศต่อไปนี้อยู่ในแนวเดียวกันหรือไม่:

ก) ;
ข)
วี)

สารละลาย:
ก) มาตรวจสอบว่ามีค่าสัมประสิทธิ์ของสัดส่วนสำหรับพิกัดที่สอดคล้องกันของเวกเตอร์หรือไม่:

ระบบไม่มีวิธีแก้ปัญหา ซึ่งหมายความว่าเวกเตอร์ไม่อยู่ในแนวเดียวกัน

“ประยุกต์” ถูกทำให้เป็นทางการโดยการตรวจสอบสัดส่วน ในกรณีนี้:
– พิกัดที่สอดคล้องกันไม่เป็นสัดส่วน ซึ่งหมายความว่าเวกเตอร์ไม่อยู่ในแนวเดียวกัน

คำตอบ:เวกเตอร์ไม่เป็นเส้นตรง

b-c) สิ่งเหล่านี้เป็นจุดสำหรับการตัดสินใจอย่างอิสระ ลองใช้สองวิธี

มีวิธีการตรวจสอบเวกเตอร์เชิงพื้นที่เพื่อหาความสอดคล้องกันผ่านปัจจัยกำหนดลำดับที่สาม วิธีการนี้จะกล่าวถึงในบทความนี้ ผลคูณเวกเตอร์ของเวกเตอร์.

เช่นเดียวกับกรณีเครื่องบิน เครื่องมือที่ได้รับการพิจารณาสามารถใช้เพื่อศึกษาความขนานของส่วนเชิงพื้นที่และเส้นตรงได้

ยินดีต้อนรับสู่ส่วนที่สอง:

การพึ่งพาเชิงเส้นและความเป็นอิสระของเวกเตอร์ในปริภูมิสามมิติ
พื้นฐานเชิงพื้นที่และระบบพิกัดสัมพันธ์

หลายรูปแบบที่เราตรวจสอบบนเครื่องบินก็ใช้ได้กับอวกาศเช่นกัน ฉันพยายามย่อบันทึกทางทฤษฎีให้เหลือน้อยที่สุด เนื่องจากส่วนแบ่งข้อมูลส่วนใหญ่ถูกเคี้ยวไปแล้ว อย่างไรก็ตาม ฉันขอแนะนำให้คุณอ่านส่วนเกริ่นนำอย่างละเอียด เนื่องจากข้อกำหนดและแนวคิดใหม่จะปรากฏขึ้น

ตอนนี้ แทนที่จะเป็นระนาบของโต๊ะคอมพิวเตอร์ เราสำรวจอวกาศสามมิติ ก่อนอื่นเรามาสร้างพื้นฐานกันก่อน ขณะนี้มีคนอยู่ในบ้าน บางคนอยู่กลางแจ้ง แต่ไม่ว่าในกรณีใด เราไม่สามารถหลบหนีสามมิติ ได้แก่ ความกว้าง ความยาว และความสูง ดังนั้น ในการสร้างพื้นฐาน จำเป็นต้องใช้เวกเตอร์เชิงพื้นที่ 3 ตัว เวกเตอร์หนึ่งหรือสองตัวไม่เพียงพอ เวกเตอร์ตัวที่สี่นั้นไม่จำเป็น

และอีกครั้งที่เราอุ่นเครื่องบนนิ้วของเรา โปรดยกมือขึ้นแล้วกางไปในทิศทางต่างๆ นิ้วหัวแม่มือ นิ้วชี้ และนิ้วกลาง- พวกนี้จะเป็นเวกเตอร์ โดยมองไปในทิศทางต่างกัน มีความยาวต่างกัน และมีมุมระหว่างกันต่างกัน ขอแสดงความยินดี พื้นฐานของพื้นที่สามมิติพร้อมแล้ว! ยังไงก็ตามไม่จำเป็นต้องแสดงสิ่งนี้ให้ครูเห็นไม่ว่าคุณจะบิดนิ้วแรงแค่ไหน แต่ก็หนีไม่พ้นคำจำกัดความ =)

ต่อไป เรามาถามตัวเองด้วยคำถามสำคัญ: เวกเตอร์สามตัวใดๆ จะเป็นพื้นฐานของปริภูมิสามมิติ- กรุณากดสามนิ้วที่ด้านบนของโต๊ะคอมพิวเตอร์ให้แน่น เกิดอะไรขึ้น เวกเตอร์สามตัวอยู่ในระนาบเดียวกัน และพูดคร่าวๆ ก็คือ เราได้สูญเสียมิติหนึ่งไป นั่นก็คือความสูง เวกเตอร์ดังกล่าวคือ เครื่องบินร่วมและเห็นได้ชัดว่าไม่ได้สร้างพื้นฐานของพื้นที่สามมิติ

ควรสังเกตว่าเวกเตอร์ coplanar ไม่จำเป็นต้องอยู่ในระนาบเดียวกัน แต่สามารถอยู่ในระนาบขนานได้ (อย่าใช้นิ้วทำเช่นนี้ มีเพียง Salvador Dali เท่านั้นที่ทำเช่นนี้ =))

คำนิยาม: เรียกว่าเวกเตอร์ เครื่องบินร่วมหากมีระนาบที่ขนานกัน เป็นตรรกะที่ต้องเพิ่มตรงนี้ว่า หากไม่มีระนาบดังกล่าว เวกเตอร์ก็จะไม่เป็นระนาบเดียวกัน

เวกเตอร์โคพลานาร์สามตัวจะขึ้นอยู่กับเชิงเส้นตรงเสมอนั่นคือพวกมันถูกแสดงเป็นเส้นตรงผ่านกันและกัน เพื่อความง่าย ลองจินตนาการอีกครั้งว่าพวกเขาอยู่ในระนาบเดียวกัน ประการแรก เวกเตอร์ไม่เพียงแต่เป็นโคพลานาร์เท่านั้น แต่ยังสามารถอยู่ในระนาบเดียวกันได้ด้วย จากนั้นเวกเตอร์ใดๆ ก็สามารถแสดงผ่านเวกเตอร์ใดๆ ก็ได้ ในกรณีที่สอง ตัวอย่างเช่น หากเวกเตอร์ไม่อยู่ในแนวเดียวกัน เวกเตอร์ที่สามก็จะแสดงผ่านเวกเตอร์เหล่านั้นในลักษณะเฉพาะ: (และเหตุใดจึงเดาง่ายจากเนื้อหาในหัวข้อที่แล้ว)

การสนทนาก็เป็นจริงเช่นกัน: เวกเตอร์ที่ไม่ใช่ coplanar สามตัวจะเป็นอิสระเชิงเส้นเสมอนั่นคือพวกเขาไม่ได้แสดงออกผ่านกันในทางใดทางหนึ่ง และเห็นได้ชัดว่ามีเพียงเวกเตอร์ดังกล่าวเท่านั้นที่สามารถสร้างพื้นฐานของปริภูมิสามมิติได้

คำนิยาม: พื้นฐานของพื้นที่สามมิติเรียกว่าเวกเตอร์อิสระเชิงเส้นสามเท่า (ไม่ใช่โคพลานาร์) ดำเนินการตามลำดับที่แน่นอนและเวกเตอร์ใดๆ ของปริภูมิ วิธีเดียวเท่านั้นถูกสลายไปบนพื้นฐานที่กำหนด โดยที่พิกัดของเวกเตอร์บนพื้นฐานนี้อยู่ที่ไหน

ฉันขอเตือนคุณว่าเราสามารถพูดได้ว่าเวกเตอร์แสดงอยู่ในรูปแบบด้วย การรวมกันเชิงเส้นเวกเตอร์พื้นฐาน

แนวคิดของระบบพิกัดถูกนำมาใช้ในลักษณะเดียวกับกรณีเครื่องบิน จุดหนึ่งจุดและเวกเตอร์อิสระเชิงเส้นสามจุดใดๆ ก็เพียงพอแล้ว:

ต้นทาง, และ ไม่ใช่ระนาบเวกเตอร์, ดำเนินการตามลำดับที่แน่นอน, ชุด ระบบพิกัดสัมพันธ์ของปริภูมิสามมิติ :

แน่นอนว่าตารางพิกัดนั้น "เอียง" และไม่สะดวก แต่ถึงกระนั้นระบบพิกัดที่สร้างขึ้นก็ช่วยให้เรา อย่างแน่นอนกำหนดพิกัดของเวกเตอร์และพิกัดของจุดใด ๆ ในอวกาศ เช่นเดียวกับเครื่องบิน สูตรบางสูตรที่ผมได้กล่าวไปแล้วจะใช้ไม่ได้ในระบบพิกัดอัฟฟินของอวกาศ

กรณีพิเศษที่คุ้นเคยและสะดวกที่สุดของระบบพิกัดอัฟฟินตามที่ทุกคนเดาก็คือ ระบบพิกัดพื้นที่สี่เหลี่ยม:

จุดหนึ่งในอวกาศที่เรียกว่า ต้นทาง, และ ออร์โธนอร์มอลมีการกำหนดพื้นฐานไว้แล้ว ระบบพิกัดอวกาศสี่เหลี่ยมคาร์ทีเซียน - ภาพที่คุ้นเคย:

ก่อนที่จะไปสู่การปฏิบัติ เรามาจัดระบบข้อมูลอีกครั้ง:

สำหรับเวกเตอร์ปริภูมิสามตัว ข้อความต่อไปนี้จะเทียบเท่ากัน:
1) เวกเตอร์มีความเป็นอิสระเชิงเส้น
2) เวกเตอร์เป็นพื้นฐาน
3) เวกเตอร์ไม่ใช่ระนาบเดียว
4) เวกเตอร์ไม่สามารถแสดงเป็นเส้นตรงผ่านกันและกันได้
5) ดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์เหล่านี้ แตกต่างจากศูนย์

ฉันคิดว่าข้อความที่ตรงกันข้ามสามารถเข้าใจได้

การพึ่งพาเชิงเส้น/ความเป็นอิสระของเวกเตอร์ปริภูมิจะถูกตรวจสอบแบบดั้งเดิมโดยใช้ดีเทอร์มิแนนต์ (จุดที่ 5) งานภาคปฏิบัติที่เหลือจะมีลักษณะพีชคณิตที่ชัดเจน ถึงเวลาที่จะแขวนแท่งทรงเรขาคณิตแล้วควงไม้เบสบอลของพีชคณิตเชิงเส้น:

เวกเตอร์อวกาศสามตัวเป็นระนาบเดียวกันก็ต่อเมื่อดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์ที่กำหนดมีค่าเท่ากับศูนย์: .

ฉันอยากจะดึงความสนใจของคุณไปที่ความแตกต่างทางเทคนิคเล็กน้อย: พิกัดของเวกเตอร์สามารถเขียนได้ไม่เพียง แต่ในคอลัมน์เท่านั้น แต่ยังอยู่ในแถวด้วย (ค่าของดีเทอร์มิแนนต์จะไม่เปลี่ยนแปลงไปจากนี้ - ดูคุณสมบัติของดีเทอร์มิแนนต์) แต่จะดีกว่ามากในคอลัมน์เนื่องจากมีประโยชน์มากกว่าในการแก้ปัญหาในทางปฏิบัติ

สำหรับผู้อ่านที่ลืมวิธีการคำนวณดีเทอร์มิแนนต์ไปบ้างหรืออาจมีความรู้เพียงเล็กน้อยเกี่ยวกับเรื่องนี้ ฉันขอแนะนำบทเรียนที่เก่าแก่ที่สุดบทหนึ่งของฉัน: จะคำนวณดีเทอร์มิแนนต์ได้อย่างไร?

ตัวอย่างที่ 6

ตรวจสอบว่าเวกเตอร์ต่อไปนี้เป็นพื้นฐานของปริภูมิสามมิติหรือไม่:

สารละลาย: อันที่จริง คำตอบทั้งหมดขึ้นอยู่กับการคำนวณดีเทอร์มีแนนต์

ก) มาคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์กัน (ดีเทอร์มิแนนต์ถูกเปิดเผยในบรรทัดแรก):

ซึ่งหมายความว่าเวกเตอร์มีความเป็นอิสระเชิงเส้น (ไม่ใช่ระนาบร่วม) และสร้างพื้นฐานของปริภูมิสามมิติ

คำตอบ: เวกเตอร์เหล่านี้เป็นฐาน

b) นี่คือประเด็นสำหรับการตัดสินใจอย่างอิสระ เฉลยเต็มและเฉลยท้ายบทเรียน

นอกจากนี้ยังมีงานสร้างสรรค์:

ตัวอย่างที่ 7

เวกเตอร์จะเป็นโคระนาบที่ค่าพารามิเตอร์เท่าใด

สารละลาย: เวกเตอร์จะเป็นระนาบเดียวกันก็ต่อเมื่อดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดของเวกเตอร์เหล่านี้มีค่าเท่ากับศูนย์:

โดยพื้นฐานแล้ว คุณต้องแก้สมการด้วยดีเทอร์มิแนนต์ เราโฉบลงบนศูนย์เหมือนว่าวบน jerboas - เป็นการดีที่สุดที่จะเปิดดีเทอร์มิแนนต์ในบรรทัดที่สองและกำจัด minuses ทันที:

เราดำเนินการลดความซับซ้อนเพิ่มเติมและลดเรื่องให้เป็นสมการเชิงเส้นที่ง่ายที่สุด:

คำตอบ: ที่

ง่ายต่อการตรวจสอบที่นี่ โดยคุณต้องแทนที่ค่าผลลัพธ์ให้เป็นค่าดีเทอร์มิแนนต์เดิมและตรวจสอบให้แน่ใจว่า , เปิดอีกครั้ง.

โดยสรุป เราจะพิจารณาปัญหาทั่วไปอีกปัญหาหนึ่ง ซึ่งมีลักษณะเป็นพีชคณิตมากกว่าและมักจะรวมอยู่ในหลักสูตรพีชคณิตเชิงเส้น เป็นเรื่องปกติมากที่สมควรได้รับหัวข้อของตัวเอง:

พิสูจน์ว่าเวกเตอร์ 3 ตัวเป็นพื้นฐานของปริภูมิสามมิติ
และหาพิกัดของเวกเตอร์ตัวที่ 4 บนพื้นฐานนี้

ตัวอย่างที่ 8

มีการระบุเวกเตอร์ แสดงว่าเวกเตอร์สร้างพื้นฐานในปริภูมิสามมิติและค้นหาพิกัดของเวกเตอร์บนพื้นฐานนี้

สารละลาย: ก่อนอื่นมาจัดการกับเงื่อนไขกันก่อน ตามเงื่อนไข จะมีการกำหนดเวกเตอร์สี่ตัว และอย่างที่คุณเห็น เวกเตอร์เหล่านี้มีพิกัดอยู่แล้วในบางพื้นฐาน สิ่งที่เป็นพื้นฐานนี้ไม่น่าสนใจสำหรับเรา และสิ่งต่อไปนี้น่าสนใจ: เวกเตอร์สามตัวอาจสร้างฐานใหม่ได้ และขั้นตอนแรกเกิดขึ้นพร้อมกับคำตอบของตัวอย่างที่ 6 โดยสมบูรณ์ จำเป็นต้องตรวจสอบว่าเวกเตอร์มีความเป็นอิสระเชิงเส้นจริงหรือไม่:

ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์:

ซึ่งหมายความว่าเวกเตอร์มีความเป็นอิสระเชิงเส้นและเป็นพื้นฐานของปริภูมิสามมิติ

- สำคัญ : พิกัดเวกเตอร์ จำเป็นเขียนลงไป ลงในคอลัมน์ดีเทอร์มิแนนต์ ไม่ใช่ในสตริง มิฉะนั้นจะเกิดความสับสนในอัลกอริทึมการแก้ปัญหาเพิ่มเติม

ตัวอย่างที่ 8

มีการระบุเวกเตอร์ แสดงว่าเวกเตอร์สร้างพื้นฐานในปริภูมิสามมิติและค้นหาพิกัดของเวกเตอร์บนพื้นฐานนี้

สารละลาย:ก่อนอื่นเรามาจัดการกับเงื่อนไขกันก่อน ตามเงื่อนไข จะมีการกำหนดเวกเตอร์สี่ตัว และอย่างที่คุณเห็น เวกเตอร์เหล่านี้มีพิกัดอยู่แล้วในบางพื้นฐาน สิ่งที่เป็นพื้นฐานนี้ไม่น่าสนใจสำหรับเรา และสิ่งต่อไปนี้น่าสนใจ: เวกเตอร์สามตัวอาจสร้างฐานใหม่ได้ และขั้นตอนแรกเกิดขึ้นพร้อมกับคำตอบของตัวอย่างที่ 6 โดยสมบูรณ์ จำเป็นต้องตรวจสอบว่าเวกเตอร์มีความเป็นอิสระเชิงเส้นจริงหรือไม่:

ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์:

ซึ่งหมายความว่าเวกเตอร์มีความเป็นอิสระเชิงเส้นและเป็นพื้นฐานของปริภูมิสามมิติ

- สำคัญ: พิกัดเวกเตอร์ จำเป็นเขียนลงไป ลงในคอลัมน์ดีเทอร์มิแนนต์ ไม่ใช่ในสตริง มิฉะนั้นจะเกิดความสับสนในอัลกอริทึมการแก้ปัญหาเพิ่มเติม

ทีนี้มาจำส่วนทางทฤษฎีกัน: หากเวกเตอร์สร้างพื้นฐาน เวกเตอร์ใด ๆ ก็สามารถขยายเป็นพื้นฐานที่กำหนดได้ในลักษณะเฉพาะ: , พิกัดของเวกเตอร์อยู่ที่ไหนในฐาน

เนื่องจากเวกเตอร์ของเราเป็นพื้นฐานของปริภูมิสามมิติ (สิ่งนี้ได้รับการพิสูจน์แล้ว) เวกเตอร์จึงสามารถขยายด้วยวิธีที่ไม่เหมือนใครบนพื้นฐานนี้:
โดยที่พิกัดของเวกเตอร์เป็นฐานอยู่ที่ไหน

ตามเงื่อนไขและจำเป็นต้องค้นหาพิกัด

เพื่อความสะดวกในการอธิบาย ฉันจะสลับส่วนต่างๆ: - เพื่อที่จะค้นหามัน คุณควรเขียนพิกัดความเท่าเทียมกันนี้ทีละพิกัด:

ค่าสัมประสิทธิ์ถูกกำหนดไว้บนพื้นฐานใด? ค่าสัมประสิทธิ์ทั้งหมดทางด้านซ้ายจะถูกถ่ายโอนจากดีเทอร์มิแนนต์อย่างแน่นอน พิกัดของเวกเตอร์เขียนไว้ทางด้านขวา

ผลลัพธ์ที่ได้คือระบบสมการเชิงเส้นสามสมการที่ไม่ทราบค่าสามค่า โดยปกติแล้วจะแก้ไขได้โดย สูตรของแครมเมอร์บ่อยครั้งแม้แต่ในคำชี้แจงปัญหาก็มีข้อกำหนดดังกล่าวด้วยซ้ำ

พบปัจจัยหลักของระบบแล้ว:
ซึ่งหมายความว่าระบบมีวิธีแก้ปัญหาเฉพาะตัว

ต่อไปนี้เป็นเรื่องของเทคนิค:

ดังนั้น:
– การสลายตัวของเวกเตอร์ตามพื้นฐาน

คำตอบ:

ดังที่ฉันได้กล่าวไปแล้ว ปัญหาคือพีชคณิตในธรรมชาติ เวกเตอร์ที่พิจารณานั้นไม่จำเป็นต้องเป็นเวกเตอร์ที่สามารถวาดในอวกาศได้ แต่อย่างแรกเลยคือเวกเตอร์นามธรรมของหลักสูตรพีชคณิตเชิงเส้น สำหรับกรณีของเวกเตอร์สองมิติ ปัญหาที่คล้ายกันสามารถกำหนดและแก้ไขได้ วิธีแก้ปัญหาจะง่ายกว่ามาก อย่างไรก็ตาม ในทางปฏิบัติฉันไม่เคยเจองานแบบนี้มาก่อน ซึ่งเป็นเหตุผลว่าทำไมฉันจึงข้ามไปในส่วนที่แล้ว

ปัญหาเดียวกันกับเวกเตอร์สามมิติสำหรับวิธีแก้ปัญหาอิสระ:

ตัวอย่างที่ 9

มีการระบุเวกเตอร์ แสดงว่าเวกเตอร์สร้างฐานและค้นหาพิกัดของเวกเตอร์บนพื้นฐานนี้ แก้ระบบสมการเชิงเส้นโดยใช้วิธีแครเมอร์

วิธีแก้ปัญหาที่สมบูรณ์และตัวอย่างโดยประมาณของการออกแบบขั้นสุดท้ายในตอนท้ายของบทเรียน

ในทำนองเดียวกัน เราสามารถพิจารณาสี่มิติ ห้ามิติ ฯลฯ ปริภูมิเวกเตอร์ โดยที่เวกเตอร์มีพิกัด 4, 5 หรือมากกว่าตามลำดับ สำหรับปริภูมิเวกเตอร์เหล่านี้ ยังมีแนวคิดเรื่องการพึ่งพาเชิงเส้น ความเป็นอิสระเชิงเส้นของเวกเตอร์ มีพื้นฐาน รวมถึงพื้นฐานออร์โธนอร์มอลด้วย การขยายตัวของเวกเตอร์เทียบกับพื้นฐาน ใช่ ช่องว่างดังกล่าวไม่สามารถวาดในเชิงเรขาคณิตได้ แต่กฎ คุณสมบัติ และทฤษฎีบททั้งหมดของกรณีสองและสามมิติใช้งานได้ นั่นคือพีชคณิตล้วนๆ ที่จริงแล้วฉันถูกล่อลวงให้พูดถึงประเด็นทางปรัชญาในบทความแล้ว อนุพันธ์บางส่วนของฟังก์ชันของตัวแปร 3 ตัวซึ่งปรากฏก่อนบทเรียนนี้

รักเวกเตอร์ และเวกเตอร์จะรักคุณ!

แนวทางแก้ไขและคำตอบ:

ตัวอย่างที่ 2: สารละลาย: มาสร้างสัดส่วนจากพิกัดที่สอดคล้องกันของเวกเตอร์กันดีกว่า:

คำตอบ: ที่

ตัวอย่างที่ 4: การพิสูจน์: ราวสำหรับออกกำลังกายรูปสี่เหลี่ยมเรียกว่ารูปสี่เหลี่ยมซึ่งมีด้านสองด้านขนานกันและอีกสองด้านไม่ขนานกัน
1) ลองตรวจสอบความขนานของด้านตรงข้าม และ .
มาหาเวกเตอร์กันดีกว่า:


ซึ่งหมายความว่าเวกเตอร์เหล่านี้ไม่เรียงกันและด้านข้างไม่ขนานกัน
2) ลองตรวจสอบความขนานของด้านตรงข้าม และ .
มาหาเวกเตอร์กันดีกว่า:

ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์:
ซึ่งหมายความว่าเวกเตอร์เหล่านี้เป็นเส้นตรง และ
บทสรุป: ด้านสองด้านของรูปสี่เหลี่ยมขนมเปียกปูนขนานกัน แต่อีกสองด้านไม่ขนานกัน ซึ่งหมายความว่าเป็นรูปสี่เหลี่ยมคางหมูตามคำนิยาม Q.E.D.

ตัวอย่างที่ 5: สารละลาย:
b) ตรวจสอบว่ามีค่าสัมประสิทธิ์สัดส่วนสำหรับพิกัดที่สอดคล้องกันของเวกเตอร์หรือไม่:

ระบบไม่มีวิธีแก้ปัญหา ซึ่งหมายความว่าเวกเตอร์ไม่อยู่ในแนวเดียวกัน
การออกแบบที่เรียบง่าย:
– พิกัดที่สองและสามไม่เป็นสัดส่วน ซึ่งหมายความว่าเวกเตอร์ไม่อยู่ในแนวเดียวกัน
คำตอบ: เวกเตอร์ไม่เป็นเส้นตรง
c) เราตรวจสอบเวกเตอร์เพื่อหาความเป็นเชิงเส้น - มาสร้างระบบกันเถอะ:

พิกัดที่สอดคล้องกันของเวกเตอร์นั้นเป็นสัดส่วนซึ่งหมายถึง
นี่คือจุดที่วิธีการออกแบบ "ฟุ่มเฟือย" ล้มเหลว
คำตอบ:

ตัวอย่างที่ 6: สารละลาย: b) ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์ (ดีเทอร์มิแนนต์ถูกเปิดเผยในบรรทัดแรก):

ซึ่งหมายความว่าเวกเตอร์นั้นขึ้นอยู่กับเชิงเส้นตรงและไม่ได้สร้างพื้นฐานของปริภูมิสามมิติ
คำตอบ : เวกเตอร์เหล่านี้ไม่ก่อให้เกิดพื้นฐาน

ตัวอย่างที่ 9: สารละลาย:ลองคำนวณดีเทอร์มิแนนต์ที่ประกอบด้วยพิกัดเวกเตอร์:


ดังนั้นเวกเตอร์จึงเป็นอิสระเชิงเส้นและเป็นพื้นฐาน
ลองแทนเวกเตอร์ด้วยผลรวมเชิงเส้นของเวกเตอร์พื้นฐาน:

ประสานงาน:

มาแก้ระบบโดยใช้สูตรของ Cramer:
ซึ่งหมายความว่าระบบมีวิธีแก้ปัญหาเฉพาะตัว



คำตอบ:เวกเตอร์เป็นพื้นฐาน

คณิตศาสตร์ขั้นสูงสำหรับนักเรียนทางจดหมายและอื่นๆ >>>

(ไปหน้าหลัก)

ผลคูณไขว้ของเวกเตอร์
ผลคูณผสมของเวกเตอร์

ในบทนี้ เราจะดูการดำเนินการกับเวกเตอร์อีกสองรายการ: ผลคูณเวกเตอร์ของเวกเตอร์และ ผลคูณของเวกเตอร์- ไม่เป็นไร บางครั้งมันก็เกิดขึ้นเพื่อความสุขที่สมบูรณ์นอกเหนือจากนั้น ผลคูณสเกลาร์ของเวกเตอร์จำเป็นต้องมีมากขึ้นเรื่อยๆ นี่คือการเสพติดเวกเตอร์ อาจดูเหมือนว่าเรากำลังเข้าสู่ป่าแห่งเรขาคณิตเชิงวิเคราะห์ นี่เป็นสิ่งที่ผิด ในคณิตศาสตร์ชั้นสูงส่วนนี้ โดยทั่วไปแล้วจะมีไม้เพียงเล็กน้อย ยกเว้นบางทีอาจจะเพียงพอสำหรับพินอคคิโอ ในความเป็นจริงวัสดุนี้เป็นเรื่องธรรมดาและเรียบง่าย - แทบจะไม่ซับซ้อนไปกว่านี้อีกแล้ว ผลิตภัณฑ์ดอทจะมีงานทั่วไปน้อยลงด้วยซ้ำ สิ่งสำคัญในเรขาคณิตเชิงวิเคราะห์ อย่างที่หลายคนเชื่อหรือเชื่ออยู่แล้ว ไม่ใช่การทำผิดพลาดในการคำนวณ ทำซ้ำเหมือนมนต์สะกดแล้วคุณจะมีความสุข =)

หากเวกเตอร์ส่องแสงอยู่ที่ไหนสักแห่งที่อยู่ห่างไกล เช่น ฟ้าแลบบนขอบฟ้า ก็ไม่สำคัญ ให้เริ่มด้วยบทเรียน เวกเตอร์สำหรับหุ่นจำลองเพื่อฟื้นฟูหรือรับความรู้พื้นฐานเกี่ยวกับเวกเตอร์ ผู้อ่านที่เตรียมพร้อมมากขึ้นสามารถทำความคุ้นเคยกับข้อมูลแบบคัดเลือกได้ ฉันพยายามรวบรวมตัวอย่างที่สมบูรณ์ที่สุดที่มักพบในงานภาคปฏิบัติ

อะไรจะทำให้คุณมีความสุขทันที? เมื่อตอนที่ฉันยังเด็ก ฉันสามารถเล่นปาหี่ลูกบอลสองหรือสามลูกได้ มันได้ผลดี ตอนนี้คุณไม่จำเป็นต้องเล่นปาหี่เลยเพราะเราจะพิจารณา เวกเตอร์เชิงพื้นที่เท่านั้นและเวกเตอร์แฟลตที่มีพิกัดสองพิกัดจะถูกละไว้ ทำไม นี่คือที่มาของการกระทำเหล่านี้ - เวกเตอร์และผลคูณผสมของเวกเตอร์ถูกกำหนดและทำงานในพื้นที่สามมิติ ง่ายกว่านี้แล้ว!