Hogyan származtassunk származékot a gyökérből. Komplex függvény származéka


Hatványfüggvény derivált képletének levezetése (x az a hatványára). Az x gyökeinek származékait tekintjük. Egy magasabb rendű hatványfüggvény deriváltjának képlete. Példák a származékok kiszámítására.

Az x a hatványának deriváltja egyenlő azzal, hogy x x mínusz egy hatványa:
(1) .

Az x n-edik gyökének az m-edik hatványra való deriváltja:
(2) .

Hatványfüggvény deriváltjának képletének levezetése

x > 0

Tekintsük az x változó a kitevőjű hatványfüggvényét:
(3) .
Itt a egy tetszőleges valós szám. Először nézzük meg az esetet.

A (3) függvény deriváltjának megtalálásához egy hatványfüggvény tulajdonságait használjuk, és a következő alakra alakítjuk:
.

Most megtaláljuk a származékot a következő használatával:
;
.
Itt .

A Forma (1) bevált.

Az x n fokú gyökének m fokra való deriváltjának képlet levezetése

Most nézzünk meg egy függvényt, amely a következő alak gyökere:
(4) .

A derivált megkereséséhez a gyököt hatványfüggvényré alakítjuk:
.
A (3) képlettel összehasonlítva azt látjuk
.
Akkor
.

Az (1) képlet segítségével megtaláljuk a deriváltot:
(1) ;
;
(2) .

A gyakorlatban nincs szükség a (2) képlet memorizálására. Sokkal kényelmesebb először a gyököket hatványfüggvényekké alakítani, majd az (1) képlet segítségével megkeresni a származékaikat (lásd a példákat az oldal végén).

x = 0

Ha , akkor a hatványfüggvény az x = változó értékére van definiálva 0 . Keressük meg a (3) függvény deriváltját x =-nél 0 . Ehhez a derivált definícióját használjuk:
.

Helyettesítsük x = 0 :
.
Ebben az esetben deriválton azt a jobb oldali határt értjük, amelyre .

Így találtuk:
.
Ebből egyértelmű, hogy a , .
Nál nél , .
Nál nél , .
Ezt az eredményt az (1) képletből is megkapjuk:
(1) .
Ezért az (1) képlet x = esetén is érvényes 0 .

x. eset< 0

Tekintsük újra a (3) függvényt:
(3) .
Az a konstans bizonyos értékeihez az x változó negatív értékeihez is definiálva van. Nevezetesen, legyen a racionális szám. Ekkor egy irreducibilis törtként ábrázolható:
,
ahol m és n olyan egész számok, amelyeknek nincs közös osztójuk.

Ha n páratlan, akkor a hatványfüggvény az x változó negatív értékeire is definiálva van. Például, ha n = 3 és m = 1 megvan az x kockagyöke:
.
Az x változó negatív értékeire is definiálva van.

Keressük meg a hatványfüggvény (3) deriváltját az a konstans racionális értékeire, amelyekre definiáltuk. Ehhez ábrázoljuk x-et a következő formában:
.
Akkor ,
.
A deriváltot úgy találjuk meg, hogy az állandót a derivált előjelén kívülre helyezzük, és alkalmazzuk a komplex függvény differenciálására vonatkozó szabályt:

.
Itt . De
.
Azóta
.
Akkor
.
Vagyis az (1) képlet a következőkre is érvényes:
(1) .

Magasabb rendű származékok

Most keressük a hatványfüggvény magasabb rendű deriváltjait
(3) .
Már megtaláltuk az elsőrendű származékot:
.

Ha az a konstanst a derivált előjelén kívülre vesszük, a másodrendű deriváltot találjuk:
.
Hasonlóképpen találjuk a harmadik és negyedik rend származékait:
;

.

Ebből egyértelmű, hogy tetszőleges n-edrendű származéka a következő formája van:
.

vegye észre, az ha a természetes szám, akkor az n-edik derivált állandó:
.
Ekkor az összes következő derivált nulla:
,
nál nél .

Példák a származékok kiszámítására

Példa

Keresse meg a függvény deriváltját:
.

Megoldás

Konvertáljuk a gyökereket hatványokká:
;
.
Ekkor az eredeti függvény a következő alakot veszi fel:
.

Hatványok származékainak keresése:
;
.
Az állandó deriváltja nulla:
.

Amin megvizsgáltuk a legegyszerűbb származékokat, valamint megismerkedtünk a differenciálás szabályaival és néhány technikai technikával a származékok megtalálásához. Ezért, ha nem ismeri túl jól a függvények származékait, vagy a cikk egyes pontjai nem teljesen egyértelműek, akkor először olvassa el a fenti leckét. Kérem, legyen komoly a hangulata – az anyag nem egyszerű, de azért igyekszem egyszerűen és érthetően bemutatni.

A gyakorlatban nagyon gyakran, mondhatnám, szinte mindig kell egy komplex függvény deriváltjával foglalkozni, amikor feladatokat kapunk a deriváltok keresésére.

Nézzük a táblázatot az összetett függvény megkülönböztetésére szolgáló (5. sz.) szabálynál:

Találjuk ki. Először is figyeljünk a bejegyzésre. Itt két függvényünk van - és, és a függvény képletesen szólva a függvénybe van beágyazva. Az ilyen típusú függvényt (amikor az egyik függvény egy másikba van beágyazva) összetett függvénynek nevezzük.

Meghívom a függvényt külső funkcióés a funkciót – belső (vagy beágyazott) függvény.

! Ezek a definíciók nem elméletiek, és nem szerepelhetnek a feladatok végső kialakításában. A „külső funkció”, „belső” funkció informális kifejezéseket csak azért használom, hogy megkönnyítsem az anyag megértését.

A helyzet tisztázásához vegye figyelembe:

1. példa

Keresse meg egy függvény deriváltját

A szinusz alatt nem csak az „X” betű van, hanem egy teljes kifejezés, így a derivált közvetlenül a táblázatból való megtalálása nem fog működni. Azt is észrevesszük, hogy az első négy szabályt itt lehetetlen alkalmazni, látszólag van különbség, de tény, hogy a szinusz nem „téphető darabokra”:

Ebben a példában már intuitív módon világos a magyarázataimból, hogy a függvény egy komplex függvény, a polinom pedig egy belső függvény (beágyazás), és egy külső függvény.

Első lépés amit egy komplex függvény deriváltjának megtalálásakor kell tennie, hogy megérteni, hogy melyik funkció belső és melyik külső.

Egyszerű példák esetén egyértelműnek tűnik, hogy egy polinom van beágyazva a szinusz alá. De mi van, ha nem minden nyilvánvaló? Hogyan lehet pontosan meghatározni, hogy melyik funkció külső és melyik belső? Ehhez a következő technikát javaslom, amit lehet mentálisan vagy piszkozatban is.

Képzeljük el, hogy ki kell számítanunk az at kifejezés értékét egy számológépen (egy helyett tetszőleges szám lehet).

Mit számolunk először? Először is a következő műveletet kell végrehajtania: , ezért a polinom belső függvény lesz:

Másodszor meg kell találni, tehát a szinusz – külső függvény lesz:

Miután mi ELADVA belső és külső függvényekkel itt az ideje alkalmazni a komplex függvények megkülönböztetésének szabályát .

Kezdjük el dönteni. A leckéből Hogyan lehet megtalálni a származékot? ne felejtsük el, hogy bármely származék megoldásának tervezése mindig így kezdődik - a kifejezést zárójelbe tesszük, és egy körvonalat teszünk a jobb felső sarokban:

Először megtaláljuk a külső függvény deriváltját (szinusz), nézzük meg az elemi függvények deriváltjainak táblázatát, és vegyük észre, hogy . Minden táblázati képlet akkor is alkalmazható, ha az „x”-t összetett kifejezéssel helyettesítjük, ebben az esetben:

Felhívjuk figyelmét, hogy a belső funkció nem változott, nem nyúlunk hozzá.

Nos, ez teljesen nyilvánvaló

A képlet alkalmazásának eredménye végső formájában így néz ki:

A konstans tényező általában a kifejezés elejére kerül:

Félreértés esetén írja le a megoldást papírra, és olvassa el újra a magyarázatokat.

2. példa

Keresse meg egy függvény deriváltját

3. példa

Keresse meg egy függvény deriváltját

Mint mindig, most is leírjuk:

Nézzük meg, hol van külső és hol belső funkciónk. Ehhez megpróbáljuk (mentálisan vagy vázlatosan) kiszámítani a kifejezés értékét a -nál. Mit kell először csinálni? Először is ki kell számolni, hogy mi az alap: ezért a polinom a belső függvény:

És csak ezután hajtják végre a hatványozást, ezért a hatványfüggvény egy külső függvény:

A képlet szerint , először meg kell találni a külső függvény deriváltját, jelen esetben a fokát. A táblázatban keressük a szükséges képletet: . Még egyszer megismételjük: bármely táblázatos képlet nem csak „X”-re, hanem összetett kifejezésre is érvényes. Így az összetett függvény megkülönböztetésére vonatkozó szabály alkalmazásának eredménye következő:

Ismét hangsúlyozom, hogy ha a külső függvény deriváltját vesszük, a belső funkciónk nem változik:

Most már csak meg kell találni a belső függvény nagyon egyszerű deriváltját, és egy kicsit módosítani az eredményt:

4. példa

Keresse meg egy függvény deriváltját

Ez egy példa, amelyet önállóan kell megoldania (válasz a lecke végén).

Hogy megszilárdítsam egy összetett függvény deriváltjának megértését, egy megjegyzés nélkül hozok egy példát, próbálja meg egyedül kitalálni, indokolja meg, hol van a külső és hol a belső függvény, miért így oldják meg a feladatokat?

5. példa

a) Keresse meg a függvény deriváltját!

b) Keresse meg a függvény deriváltját!

6. példa

Keresse meg egy függvény deriváltját

Itt van egy gyökér, és a gyökér megkülönböztetéséhez hatalomként kell ábrázolni. Így először hozzuk a függvényt a megkülönböztetéshez megfelelő formába:

A függvényt elemezve arra a következtetésre jutunk, hogy a három tag összege belső függvény, a hatványra emelés pedig külső függvény. Alkalmazzuk az összetett függvények differenciálásának szabályát :

A fokot ismét gyökként (gyökként) ábrázoljuk, és a belső függvény deriváltjára egy egyszerű szabályt alkalmazunk az összeg differenciálására:

Kész. A kifejezést zárójelben lévő közös nevezőre is csökkentheti, és mindent egy törtként írhat le. Természetesen szép, de ha nehézkes hosszú származékokat kap, jobb, ha ezt nem teszi (könnyű összezavarodni, felesleges hibát elkövetni, és a tanárnak kényelmetlen lesz ellenőrizni).

7. példa

Keresse meg egy függvény deriváltját

Ez egy példa, amelyet önállóan kell megoldania (válasz a lecke végén).

Érdekes megjegyezni, hogy néha az összetett függvények megkülönböztetésének szabálya helyett használhatja a hányadosok megkülönböztetésének szabályát. , de egy ilyen megoldás szokatlan perverziónak tűnik. Íme egy tipikus példa:

8. példa

Keresse meg egy függvény deriváltját

Itt használhatja a hányados differenciálásának szabályát , de sokkal jövedelmezőbb egy komplex függvény differenciálási szabályán keresztül megtalálni a deriváltot:

Felkészítjük a függvényt a differenciálásra - a mínuszt kimozgatjuk a derivált előjelből, és a koszinust a számlálóba emeljük:

A koszinusz belső függvény, a hatványozás külső függvény.
Használjuk a szabályunkat :

Megkeressük a belső függvény deriváltját, és visszaállítjuk a koszinuszát:

Kész. A vizsgált példában fontos, hogy ne keveredjünk össze a jelekben. Egyébként próbáld meg a szabály segítségével megoldani , a válaszoknak egyeznie kell.

9. példa

Keresse meg egy függvény deriváltját

Ez egy példa, amelyet önállóan kell megoldania (válasz a lecke végén).

Eddig olyan eseteket vizsgáltunk, amikor egy komplex függvényben csak egy fészkelődésünk volt. A gyakorlati feladatokban gyakran találhatunk származékokat, ahol a fészkelő babákhoz hasonlóan egymásba 3 vagy akár 4-5 függvény kerül egyszerre.

10. példa

Keresse meg egy függvény deriváltját

Ismerjük meg ennek a függvénynek a mellékleteit. Próbáljuk meg kiszámítani a kifejezést a kísérleti érték segítségével. Hogyan számolnánk egy számológéppel?

Először meg kell találni, ami azt jelenti, hogy az arcszinusz a legmélyebb beágyazás:

Az egyiknek ezt az arcszinuszát négyzetre kell emelni:

És végül hetet emelünk hatványra:

Vagyis ebben a példában három különböző függvényünk és két beágyazásunk van, míg a legbelső függvény az arcszinusz, a legkülső függvény pedig az exponenciális függvény.

Kezdjük el dönteni

A szabály szerint Először ki kell venni a külső függvény deriváltját. Megnézzük a derivált táblázatot, és megkeressük az exponenciális függvény deriváltját: Az egyetlen különbség az, hogy „x” helyett egy komplex kifejezésünk van, ami nem tagadja ennek a képletnek az érvényességét. Tehát egy összetett függvény megkülönböztetésére vonatkozó szabály alkalmazásának eredménye következő.

A derivált megtalálásának műveletét differenciálásnak nevezzük.

A legegyszerűbb (és nem túl egyszerű) függvények deriváltjainak megtalálásának problémáinak megoldása eredményeként származék definíciója szerint A növekmény és az argumentum növekmény arányának határaként megjelent a derivált táblázat és a pontosan meghatározott differenciálási szabályok. A származékok keresésének területén elsőként Isaac Newton (1643-1727) és Gottfried Wilhelm Leibniz (1646-1716) dolgozott.

Ezért napjainkban ahhoz, hogy bármely függvény deriváltját megtaláljuk, nem kell kiszámítani a függvény növekményének és az argumentum növekményének arányának fent említett határát, hanem csak a táblázatot kell használni. származékai és a differenciálás szabályai. A derivált megtalálására a következő algoritmus alkalmas.

A származék megtalálásához, szükséged van egy kifejezésre a prímjel alá egyszerű függvényeket komponensekre bontaniés meghatározza, hogy milyen lépéseket (termék, összeg, hányados) ezek a funkciók összefüggenek. Ezután az elemi függvények deriváltjait a derivált táblázatban, a szorzat, az összeg és a hányados származékainak képleteit pedig a differenciálás szabályaiban találjuk. A derivált táblázatot és a differenciálási szabályokat az első két példa után adjuk meg.

1. példa Keresse meg egy függvény deriváltját

Megoldás. A differenciálás szabályaiból megtudjuk, hogy egy függvényösszeg deriváltja a függvények deriváltjainak összege, azaz.

A derivált táblázatból megtudjuk, hogy "x" deriváltja egyenlő eggyel, a szinusz deriváltja pedig koszinusszal. Ezeket az értékeket behelyettesítjük a deriváltak összegébe, és megkeressük a probléma feltételéhez szükséges deriváltot:

2. példa Keresse meg egy függvény deriváltját

Megoldás. Egy olyan összeg deriváltjaként differenciálunk, amelyben a második tag állandó tényezője van, ez kivehető a derivált előjeléből:

Ha továbbra is kérdések merülnek fel azzal kapcsolatban, hogy valami honnan származik, azokat rendszerint tisztázzuk, miután megismerkedtünk a származékok táblázatával és a differenciálás legegyszerűbb szabályaival. Jelenleg rájuk megyünk.

Egyszerű függvények deriváltjainak táblázata

1. Állandó (szám) származéka. Bármely szám (1, 2, 5, 200...), amely a függvénykifejezésben szerepel. Mindig egyenlő nullával. Ezt nagyon fontos megjegyezni, mivel nagyon gyakran van rá szükség
2. A független változó származéka. Leggyakrabban "X". Mindig egyenlő eggyel. Ezt is fontos sokáig emlékezni
3. Végzettség származéka. A feladatok megoldása során a nem négyzetgyököket hatványokká kell konvertálnia.
4. Változó deriváltja a -1 hatványra
5. A négyzetgyök származéka
6. A szinusz származéka
7. A koszinusz származéka
8. Az érintő származéka
9. A kotangens származéka
10. Az arcszinus származéka
11. Arccosine származéka
12. Arktangens származéka
13. Az ívkotangens származéka
14. A természetes logaritmus deriváltja
15. Logaritmikus függvény deriváltja
16. A kitevő származéka
17. Exponenciális függvény deriváltja

A megkülönböztetés szabályai

1. Összeg vagy különbözet ​​származéka
2. A termék származéka
2a. Egy kifejezés származéka szorozva egy állandó tényezővel
3. A hányados származéka
4. Komplex függvény származéka

1. szabályHa a funkciók

egy ponton differenciálhatók, akkor a függvények ugyanazon a ponton differenciálhatók

és

azok. függvények algebrai összegének deriváltja egyenlő e függvények deriváltjainak algebrai összegével.

Következmény. Ha két differenciálható függvény konstans taggal különbözik, akkor deriváltjaik egyenlőek, azaz

2. szabályHa a funkciók

egy ponton differenciálhatóak, akkor a termékük ugyanazon a ponton differenciálható

és

azok. Két függvény szorzatának deriváltja egyenlő ezen függvények szorzatának és a másik függvény szorzatának összegével.

Következmény 1. A konstans tényező kivehető a derivált előjeléből:

Következmény 2. Több differenciálható függvény szorzatának deriváltja egyenlő az egyes tényezők és az összes többi derivált szorzatának összegével.

Például három szorzóhoz:

3. szabály.Ha a funkciók

egy bizonyos ponton megkülönböztethető És , akkor ezen a ponton a hányadosuk is differenciálhatóu/v , és

azok. két függvény hányadosának deriváltja egyenlő egy törttel, amelynek számlálója a nevező és a számláló deriváltja, valamint a számláló és a nevező deriváltja szorzatának különbsége, a nevezője pedig a nevező négyzete. az egykori számláló.

Hol lehet keresni a dolgokat más oldalakon

Egy szorzat származékának és hányadosának valós problémákban való megtalálásakor mindig több differenciálási szabályt kell egyszerre alkalmazni, ezért a cikkben több példa is található ezekre a származékokra."A szorzat származéka és a függvények hányadosa " .

Megjegyzés. Nem szabad összekeverni a konstanst (vagyis egy számot) összegben szereplő tagként és állandó tényezőként! Egy tag esetén a deriváltja egyenlő nullával, állandó tényező esetén pedig kikerül a származékok előjeléből. Ez egy tipikus hiba, amely a származékok tanulmányozásának kezdeti szakaszában fordul elő, de mivel az átlaghallgató több egy- és kétrészes példát old meg, ezt a hibát már nem követi el.

És ha egy termék vagy hányados megkülönböztetésekor van egy kifejezés u"v, amiben u- egy szám, például 2 vagy 5, azaz egy állandó, akkor ennek a számnak a deriváltja nulla lesz, és ezért a teljes tag nulla lesz (ezt az esetet a 10. példa tárgyalja).

Egy másik gyakori hiba, hogy egy összetett függvény deriváltját mechanikusan egy egyszerű függvény deriváltjaként oldják meg. Ezért komplex függvény deriváltja külön cikket szentelünk. De először megtanuljuk megtalálni az egyszerű függvények deriváltjait.

Útközben nem nélkülözheti a kifejezések átalakítását. Ehhez előfordulhat, hogy új ablakban kell megnyitnia a kézikönyvet. Erőkkel és gyökerekkel rendelkező cselekvésekÉs Műveletek törtekkel.

Ha megoldásokat keres a hatványokkal és gyökökkel rendelkező törtek származékaira, vagyis amikor a függvény így néz ki , majd kövesse az órára " Hatványokkal és gyökökkel rendelkező törtek összegének származéka ".

Ha olyan feladatod van, mint pl , akkor van egy lecke "Egyszerű trigonometrikus függvények származékai."

Példák lépésről lépésre - hogyan lehet megtalálni a származékot

3. példa Keresse meg egy függvény deriváltját

Megoldás. Meghatározzuk a függvénykifejezés részeit: a teljes kifejezés egy szorzatot reprezentál, faktorai pedig összegek, amelyek közül a másodikban az egyik tag konstans tényezőt tartalmaz. Alkalmazzuk a szorzatdifferenciálási szabályt: két függvény szorzatának deriváltja egyenlő ezen függvények szorzatainak összegével a másik függvény deriváltjával:

Ezután alkalmazzuk az összeg differenciálásának szabályát: a függvények algebrai összegének deriváltja egyenlő ezen függvények deriváltjainak algebrai összegével. Esetünkben minden összegben a második tagnak mínusz előjele van. Minden összegben látunk egy független változót, amelynek deriváltja eggyel, és egy állandót (számot), amelynek deriváltja nulla. Tehát az „X” egy lesz, a mínusz 5 pedig nullává. A második kifejezésben az "x"-t megszorozzuk 2-vel, így kettőt megszorozunk ugyanazzal az egységgel, mint az "x" deriváltja. A következő derivált értékeket kapjuk:

A talált deriváltokat behelyettesítjük a szorzatok összegébe, és megkapjuk a probléma feltétele által megkövetelt teljes függvény deriváltját:

4. példa Keresse meg egy függvény deriváltját

Megoldás. Meg kell találnunk a hányados deriváltját. A hányados differenciálására a képletet alkalmazzuk: két függvény hányadosának deriváltja egyenlő egy törttel, amelynek számlálója a nevező és a számláló deriváltja és a számláló szorzata és a számláló származéka közötti különbség. nevező, a nevező pedig az előbbi számláló négyzete. Kapunk:

A 2. példában már megtaláltuk a számlálóban szereplő tényezők deriváltját. Ne felejtsük el azt sem, hogy a szorzatot, amely az aktuális példában a számláló második tényezője, mínuszjellel vesszük:

Ha olyan problémákra keres megoldást, amelyekben meg kell találnia egy függvény deriváltját, ahol a gyökök és hatványok folytonos halmaza van, mint pl. , akkor üdv az órán "Hatványokkal és gyökökkel rendelkező törtek összegeinek származéka".

Ha többet szeretne megtudni a szinuszok, koszinuszok, érintők és más trigonometrikus függvények deriváltjairól, vagyis amikor a függvény így néz ki , akkor egy lecke neked "Egyszerű trigonometrikus függvények származékai".

5. példa. Keresse meg egy függvény deriváltját

Megoldás. Ebben a függvényben egy szorzatot látunk, melynek egyik tényezője a független változó négyzetgyöke, amelynek deriváltját a derivált táblázatban ismerkedtünk meg. A szorzat megkülönböztetésének szabályát és a négyzetgyök deriváltjának táblázatos értékét alkalmazva kapjuk:

6. példa. Keresse meg egy függvény deriváltját

Megoldás. Ebben a függvényben egy olyan hányadost látunk, amelynek osztaléka a független változó négyzetgyöke. A 4. példában megismételt és alkalmazott hányadosok differenciálási szabályát, valamint a négyzetgyök deriváltjának táblázatos értékét felhasználva kapjuk:

A számlálóban lévő tört eltávolításához szorozza meg a számlálót és a nevezőt -val.