Как пишется вероятность. Долой неопределенность, или как найти вероятность


Это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина - женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента .

Вероятность в математике

В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова . Вероятностью называется мера P , которая задаётся на множестве X , называемом вероятностным пространством . Эта мера должна обладать следующими свойствами:

Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности : если множества A 1 и A 2 не пересекаются, то . Для доказательства нужно положить все A 3 , A 4 , … равными пустому множеству и применить свойство счётной аддитивности.

Вероятностная мера может быть определена не для всех подмножеств множества X . Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X . При этом случайные события определяются как измеримые подмножества пространства X , то есть как элементы сигма-алгебры .

Вероятность смысле

Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным , в противном случае - невероятным . Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность невероятность ) бывает большею или меньшею .

Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической , когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность ), далее - probatio minus plena , затем - probatio semiplena major и, наконец, probatio semiplena minor .

Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда , вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм) .

Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции . Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени - солдат, журналистов, рабочих опасных профессий, - представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori ; это делается чисто индуктивным путем, посредством статистики . Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей .

См. также

Примечания

Литература

  • Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
  • Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
  • Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Вероятность" в других словарях:

    Общенаучная и филос. категория, обозначающая количественную степень возможности появления массовых случайных событий при фиксированных условиях наблюдения, характеризующую устойчивость их относительных частот. В логике семантическая степень… … Философская энциклопедия

    ВЕРОЯТНОСТЬ, число в интервале от нуля до единицы включительно, представляющее возможность свершения данного события. Вероятность события определяется как отношение числа шансов того, что событие может произойти, к общему количеству возможных… … Научно-технический энциклопедический словарь

    По всей вероятности.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. вероятность возможность, вероятие, шанс, объективная возможность, маза, допустимость, риск. Ant. невозможность… … Словарь синонимов

    вероятность - Мера того, что событие может произойти. Примечание Математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать относительную частоту в серии наблюдений… … Справочник технического переводчика

    Вероятность - «математическая, числовая характеристика степени возможности появления какого либо события в тех или иных определенных, могущих повторяться неограниченное число раз условиях». Если исходить из этого классического… … Экономико-математический словарь

    - (probability) Возможность наступления какого либо события или определенного результата. Может быть представлена в виде шкалы с делениями от 0 до 1. При нулевой вероятности события его наступление невозможно. При вероятности, равной 1, наступление … Словарь бизнес-терминов

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Профессиональный беттер должен хорошо ориентироваться в коэффициентах, быстро и правильно оценивать вероятность события по коэффициенту и при необходимости уметь перевести коэффициенты из одного формата в другой . В данном мануале мы расскажем о том, какие бывают виды коэффициентов, а так же на примерах разберём, как можно высчитывать вероятность по известному коэффициенту и наоборот.

Какие бывают типы коэффициентов?

Существует три основных вида коэффициентов, которые предлагают игрокам букмекеры: десятичные коэффициенты , дробные коэффициенты (английские) и американские коэффициенты . Наиболее распространённые коэффициенты в Европе - десятичные. В Северной Америке популярны американские коэффициенты. Дробные коэффициенты - наиболее традиционный вид, они сразу же отражают информацию о том сколько нужно поставить, чтобы получить определённую сумму.

Десятичные коэффициенты

Десятичные или еще их называют европейские коэффициенты - это привычный формат числа, представленный десятичной дробью с точностью до сотых, а иногда даже до тысячных. Пример десятичного коэффициента - 1.91. Рассчитать прибыль в случае с десятичными коэффициентами очень просто, достаточно лишь умножить сумму вашей ставки на этот коэффициент. Например, в матче "Манчестер Юнайтед" - "Арсенал" победа "МЮ" выставлена с коэффициентом - 2.05, ничья оценена коэффициентом - 3.9, а победа "Арсенала" равняется - 2.95. Предположим, что мы уверены в победе "Юнайтед" и ставим на них 1000 долларов. Тогда наш возможный доход рассчитывается следующим образом:

2.05 * $1000 = $2050;

Правда ведь ничего сложного?! Точно так же рассчитывается возможный доход при ставке на ничью и победу "Арсенала".

Ничья: 3.9 * $1000 = $3900;
Победа "Арсенала": 2.95 * $1000 = $2950;

Как рассчитать вероятность события по десятичным коэффициентам?

Представим теперь что нам нужно определить вероятность события по десятичным коэффициентам, которые выставил букмекер. Делается это так же очень просто. Для этого мы единицу делим на этот коэффициент.

Возьмем уже имеющиеся данные и посчитаем вероятность каждого события:

Победа "Манчестер Юнайтед": 1 / 2.05 = 0,487 = 48,7%;
Ничья: 1 / 3.9 = 0,256 = 25,6%;
Победа "Арсенала": 1 / 2.95 = 0,338 = 33,8%;

Дробные коэффициенты (Английские)

Как понятно из названия дробный коэффициент представлен обыкновенной дробью. Пример английского коэффициента - 5/2. В числителе дроби находиться число, являющееся потенциальной суммой чистого выигрыша, а в знаменателе расположено число обозначающее сумму которую нужно поставить, чтобы этот выигрыш получить. Проще говоря, мы должны поставить $2 доллара, чтобы выиграть $5. Коэффициент 3/2 означает что для того чтобы получить $3 чистого выигрыша нам придётся сделать ставку в размере $2.

Как рассчитать вероятность события по дробным коэффициентам?

Вероятность события по дробным коэффициентам рассчитать так же не сложно, нужно всего на всего разделить знаменатель на сумму числителя и знаменателя.

Для дроби 5/2 рассчитаем вероятность: 2 / (5+2) = 2 / 7 = 0,28 = 28%;
Для дроби 3/2 рассчитаем вероятность:

Американские коэффициенты

Американские коэффициенты в Европе непопулярны, зато в Северной Америке очень даже. Пожалуй, данный вид коэффициентов самый сложный, но это только на первый взгляд. На самом деле и в этом типе коэффициентов ничего сложного нет. Сейчас во всем разберёмся по порядку.

Главной особенностью американских коэффициентов является то, что они могут быть как положительными , так и отрицательными . Пример американских коэффициентов - (+150), (-120). Американский коэффициент (+150) означает, что для того чтобы заработать $150 нам нужно поставить $100. Иными словами положительный американский коэффициент отражает потенциальный чистый заработок при ставке в $100. Отрицательный же американский коэффициент отражает сумму ставки, которую необходимо сделать для того чтобы получить чистый выигрыш в $100. Например коэффициент (- 120) нам говорит о том, что поставив $120 мы выиграем $100.

Как рассчитать вероятность события по американским коэффициентам?

Вероятность события по американскому коэффициенту считается по следующим формулам:

(-(M)) / ((-(M)) + 100) , где M - отрицательный американский коэффициент;
100 / (P + 100) , где P - положительный американский коэффициент;

Например, мы имеем коэффициент (-120), тогда вероятность рассчитывается так:

(-(M)) / ((-(M)) + 100); подставляем вместо "M" значение (-120);
(-(-120)) / ((-(-120)) + 100 = 120 / (120 + 100) = 120 / 220 = 0,545 = 54,5%;

Таким образом, вероятность события с американским коэффициентом (-120) равна 54,5%.

Например, мы имеем коэффициент (+150), тогда вероятность рассчитывается так:

100 / (P + 100); подставляем вместо "P" значение (+150);
100 / (150 + 100) = 100 / 250 = 0,4 = 40%;

Таким образом, вероятность события с американским коэффициентом (+150) равна 40%.

Как зная процент вероятности перевести его в десятичный коэффициент?

Для того чтобы рассчитать десятичный коэффициент по известному проценту вероятности нужно 100 разделить на вероятность события в процентах. Например, вероятность события составляет 55%, тогда десятичный коэффициент этой вероятности будет равен 1,81.

100 / 55% = 1,81

Как зная процент вероятности перевести его в дробный коэффициент?

Для того чтобы рассчитать дробный коэффициент по известному проценту вероятности нужно от деления 100 на вероятность события в процентах отнять единицу. Например, имеем процент вероятности 40%, тогда дробный коэффициент этой вероятности будет равен 3/2.

(100 / 40%) - 1 = 2,5 - 1 = 1,5;
Дробный коэффициент равен 1,5/1 или 3/2.

Как зная процент вероятности перевести его в американский коэффициент?

Если вероятность события больше 50%, то расчёт производится по формуле:

- ((V) / (100 - V)) * 100, где V - вероятность;

Например, имеем вероятность события 80%, тогда американский коэффициент этой вероятности будет равен (-400).

- (80 / (100 - 80)) * 100 = - (80 / 20) * 100 = - 4 * 100 = (-400);

В случае если вероятность события меньше 50%, то расчёт производиться по формуле:

((100 - V) / V) * 100 , где V - вероятность;

Например, имеем процент вероятности события 20%, тогда американский коэффициент этой вероятности будет равен (+400).

((100 - 20) / 20) * 100 = (80 / 20) * 100 = 4 * 100 = 400;

Как перевести коэффициент в другой формат?

Бывают случаи, когда необходимо перевести коэффициенты из одного формата в другой. Например, у нас есть дробный коэффициент 3/2 и нам нужно перевести его в десятичный. Для перевода дробного коэффициента в десятичный мы сначала определяем вероятность события с дробным коэффициентом, а затем эту вероятность переводим в десятичный коэффициент.

Вероятность события с дробным коэффициентом 3/2 равна 40%.

2 / (3+2) = 2 / 5 = 0,4 = 40%;

Теперь переведём вероятность события в десятичный коэффициент, для этого 100 делим на вероятность события в процентах:

100 / 40% = 2.5;

Таким образом, дробный коэффициент 3/2 равен десятичному коэффициенту 2.5. Аналогичным образом переводятся, например, американские коэффициенты в дробные, десятичные в американские и т.д. Самое сложное во всём этом лишь расчёты.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?