Что изучают биологические науки: список прикладных предметов. Биология — наука о жизни


Первая крупная биологическая наука – ботаника. Она занимается изучением растений. Ботаника делится на множество дисциплин, которые также можно считать биологическими. Альгология . Анатомия растений изучает строение тканей и клеток растений, а также по каким законам развиваются эти ткани. Бриология изучает мохообразные растения, дендрология – древесные. Карпология изучает семена и плоды растений.

Лихенология – наука о лишайниках. Микология – о грибах, микогеоргафия – об их распространении. Палеоботаника – раздел ботаники, который изучает ископаемые останки растений. Палинология изучает пыльцевые зерна и споры растений. Наука систематика растений занимается их классификацией. Фитопатология изучает различные болезни растений, вызванные патогенными и экологическими факторами. Флористика изучает флору, исторически сложившуюся на определенной территории совокупность растений.

Наука этноботаника изучает взаимодействие людей и растений. Геоботаника – наука о растительности Земли, о растительных сообществах – фитоценозах. География растений изучает закономерности их распространения. Морфология растений – наука о закономерностях . Физиология растений – о функциональной активности организмов растений.

Зоология и микробиология

Ихтиология – наука о рыбах, карцинология – о ракообразных, кетология – о китообразных, конхиология – о моллюсках, мирмекология – о муравьях, нематология – о круглых червях, оология – о яйцах животных, орнитология – о птицах. Палеозоология изучает ископаемые останки животных, планктология – планктон, приматология – приматов, териология – млекопитающих, – насекомых, протозоология – одноклеточных. Этология занимается изучением .

Третий крупный раздел биологии – микробиология. Эта наука изучает невидимые невооруженным глазом живые организмы: бактерии, археи, микроскопические грибы и водоросли, вирусы. Соответственно выделяются и разделы: вирусология, микология, бактериология и т.д.

Биология (от греч. биос - жизнь, логос - слово, наука) - это комплекс наук о живой природе.

Предметом биологии являются все проявления жизни: строение и функции живых существ, их разнообразие, происхождение и развитие, а также взаимодействие с окружающей средой. Основная задача биологии как науки состоит в истолковании всех явлений живой природы на научной основе, учитывая при этом, что целому организму присущи свойства, в корне отличающиеся от его составляющих.

Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле, классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

В основе современной биологии лежат 5 фундаментальных принципов:

  1. клеточная теория
  2. эволюция
  3. генетика
  4. гомеостаз
  5. энергия

Биологические науки

В настоящее время в состав биологии включают целый ряд наук, которые можно систематизировать по таким критериям: по предмету и преобладающим методам исследования и по изучаемому уровню организации живой природы .

По предмету исследовани я биологические науки делят на бактериологию, ботанику, вирусологию, зоологию, микологию.

Ботаника - это биологическая наука, комплексно изучающая растения и растительный покров Земли.

Зоология - раздел биологии, наука о многообразии, строении, жизнедеятельности, распространении и взаимосвязи животных со средой обитания, их происхождении и развитии.

Бактериология - биологическая наука, изучающая строение и жизнедеятельность бактерий, а также их роль в природе.

Вирусология - биологическая наука, изучающая вирусы.

Основным объектом микологии являются грибы, их строение и особенности жизнедеятельности.

Лихенология - биологическая наука, изучающая лишайники.

Бактериология, вирусология и некоторые аспекты микологии часто рассматриваются в составе микробиологии - раздела биологии, науке о микроорганизмах (бактериях, вирусах и микроскопических грибах).

Систематика , или таксономия , - биологическая наука, которая описывает и классифицирует по группам все живые и вымершие существа.

В свою очередь, каждая из перечисленных биологических наук подразделяется на биохимию, морфологию, анатомию, физиологию, эмбриологию, генетику и систематику (растений, животных или микроорганизмов). Биохимия - это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах и лежащих в основе их жизнедеятельности.

Морфология - биологическая наука, изучающая форму и строение организмов, а также закономерности их развития. В широком смысле она включает в себя цитологию, анатомию, гистологию и эмбриологию. Различают морфологию животных и растений.

Анатомия - это раздел биологии (точнее - морфологии), наука, изучающая внутреннее строение и форму отдельных органов, систем и организма в целом. Анатомия растений рассматривается в составе ботаники, анатомия животных - в составе зоологии, а анатомия человека является отдельной наукой.

Физиология - биологическая наука, изучающая процессы жизнедеятельности растительных и животных организмов, их отдельных систем, органов, тканей и клеток. Существуют физиология растений, животных и человека.

Эмбриология (биология развития) - раздел биологии, наука об индивидуальном развитии организма, в том числе развитии зародыша.

Объектом генетики являются закономерности наследственности и изменчивости. В настоящее время это одна из наиболее динамично развивающихся биологических наук.

По изучаемому уровню организации живой природы выделяют молекулярную биологию, цитологию, гистологию, органологию, биологию организмов и надорганизменных систем.

Молекулярная биология является одним из наиболее молодых разделов биологии, наука, изучающая, в частности, организацию наследственной информации и биосинтез белка.

Цитология , или клеточная биология, - биологическая наука, объектом изучения которой являются клетки как одноклеточных, так и многоклеточных организмов.

Гистология - биологическая наука, раздел морфологии, объектом которой является строение тканей растений и животных.

К сфере органологии относят морфологию, анатомию и физиологию различных органов и их систем. Биология организмов включает все науки, предметом которых являются живые организмы, например, этологию - науку о поведении организмов.

Биология надорганизменных систем подразделяется на биогеографию и экологию. Распространение живых организмов изучает биогеография , тогда как экология - организацию и функционирование надорганизменных систем различных уровней: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы.

По преобладающим методам исследования можно выделить описательную (например, морфологию), экспериментальную (например, физиологию) и теоретическую биологию. Выявление и объяснение закономерностей строения, функционирования и развития живой природы на различных уровнях ее организации является задачей общей биологии. К ней относят биохимию, молекулярную биологию, цитологию, эмбриологию, генетику, экологию, эволюционное учение и антропологию. Эволюционное учение изучает причины, движущие силы, механизмы и общие закономерности эволюции живых организмов. Одним из его разделов является палеонтология - наука, предметом которой являются ископаемые останки живых организмов. Антропология - раздел общей биологии, наука о происхождении и развитии человека как биологического вида, а также разнообразии популяций современного человека и закономерностях их взаимодействия. Прикладные аспекты биологии отнесены к сфере биотехнологии, селекции и других быстро- развивающихся наук. Биотехнологией называют биологическую науку, изучающую использование живых организмов и биологических процессов в производстве. Она широко применяется в пищевой (хлебопечение, сыроделие, пивоварение и др.) и фармацевтической промышленностях (получение антибиотиков, витаминов), для очистки вод и т. п. Селекция - наука о методах создания пород домашних животных, сортов культурных растений и штаммов микроорганизмов с нужными человеку свойствами. Под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей.

Прогресс биологии тесно связан с успехами других естественных и точных наук, таких как физика, химия, математика, информатика и др. Например, микроскопирование, ультразвуковые исследования (УЗИ), томография и другие методы биологии основываются на физических закономерностях, а изучение структуры биологических молекул и процессов, происходящих в живых системах, было бы невозможным без применения химических и физических методов. Применение математических методов позволяет, с одной стороны, выявить наличие закономерной связи между объектами или явлениями, подтвердить достоверность полученных результатов, а с другой - смоделировать явление или процесс. В последнее время все большее значение в биологии приобретают компьютерные методы, например моделирование. На стыке биологии и других наук возник целый ряд новых наук, таких как биофизика, биохимия, бионика и др.

Роль биологии в формировании современной естественнонаучной картины мира

На этапе становления биология еще не существовала отдельно от других естественных наук и ограничивалась лишь наблюдением, изучением, описанием и классификацией представителей животного и растительного мира, т. е. была описательной наукой. Однако это не помешало античным естествоиспытателям Гиппократу (ок. 460-377 гг. до н. э.), Аристотелю (384-322 гг. до н. э.) и Теофрасту (настоящее имя Тиртам, 372-287 гг. до н. э.) внести значительный вклад в развитие представлений о строении тела человека и животных, а также о биологическом разнообразии животных и растений, заложив тем самым основы анатомии и физиологии человека, зоологии и ботаники. Углубление познаний о живой природе и систематизация ранее накопленных фактов, происходившие в XVI-XVIII веках, увенчались введением бинарной номенклатуры и созданием стройной систематики растений (К. Линней) и животных (Ж.-Б. Ламарк). Описание значительного числа видов со сходными морфологическими признаками, а также палеонтологические находки стали предпосылками к развитию представлений о происхождении видов и путях исторического развития органического мира. Так, опыты Ф. Реди, Л. Спалланцани и Л. Пастера в XVII-XIX веках опровергли гипотезу спонтанного самозарождения, выдвинутую еще Аристотелем и бытовавшую в средние века, а теория биохимической эволюции А. И. Опарина и Дж. Холдейна, блестяще подтвержденная С. Миллером и Г. Юри, позволила дать ответ на вопрос о происхождении всего живого. Если сам процесс возникновения живого из неживых компонентов и его эволюция сами по себе уже не вызывают сомнений, то механизмы, пути и направления исторического развития органического мира все еще до конца не выяснены, поскольку ни одна из двух основных соперничающих между собой теорий эволюции (синтетическая теория эволюции, созданная на основе теории Ч. Дарвина, и теория Ж.-Б. Ламарка) все еще не могут предъявить исчерпывающих доказательств. Применение микроскопии и других методов смежных наук, обусловленное прогрессом в области других естественных наук, а также внедрение практики эксперимента позволило немецким ученым Т. Шванну и М. Шлейдену еще в XIX веке сформулировать клеточную теорию, позднее дополненную Р. Вирховым и К. Бэром. Она стала важнейшим обобщением в биологии, которое краеугольным камнем легло в основу современных представлений о единстве органического мира. Открытие закономерностей передачи наследственной информации чешским монахом Г. Менделем послужило толчком к дальнейшему бурному развитию биологии в XX-XXI веках и привело не только к открытию универсального носителя наследственности - ДНК, но и генетического кода, а также фундаментальных механизмов контроля, считывания и изменчивости наследственной информации. Развитие представлений об окружающей среде привело к возникновению такой науки, какэкология, и формулировке учения о биосфере как о сложной многокомпонентной планетарной системе связанных между собой огромных биологических комплексов, а также химических и геологических процессов, происходящих на Земле (В.И. Вернадский), что в конечном итоге позволяет хотя бы в небольшой степени уменьшить негативные последствия хозяйственной деятельности человека. Таким образом, биология сыграла немаловажную роль в становлении современной естественнонаучной картины мира.

Методы изучения живых объектов

Как и любая другая наука, биология имеет свой арсенал методов. Помимо научного метода познания, применяемого в других отраслях, в биологии широко используются такие методы, как исторический, сравнительно-описательный и др.

Научный метод познания включает в себя наблюдение, формулировку гипотез, эксперимент, моделирование, анализ результатов и выведение общих закономерностей.

Наблюдение — это целенаправленное восприятие объектов и явлений с помощью органов чувств или приборов, обусловленное задачей деятельности. Основным условием научного наблюдения является его объективность, т.е. возможность проверки полученных данных путем повторного наблюдения или применения иных методов исследования, например эксперимента. Полученные в результате наблюдения факты называются данными. Они могут быть как качественными (описывающими запах, вкус, цвет, форму и т. д.), так и количественными, причем количественные данные являются более точными, чем качественные.

На основе данных наблюдений формулируется гипотеза — предположительное суждение о закономерной связи явлений. Гипотеза подвергается проверке в серии экспериментов.

Экспериментом называется научно поставленный опыт, наблюдение исследуемого явления в контролируемых условиях, позволяющих выявить характеристики данного объекта или явления. Высшей формой эксперимента является моделирование — исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. По существу это одна из основных категорий теории познания: на идее моделирования базируется любой метод научного исследования — как теоретический, так и экспериментальный. Результаты эксперимента и моделирования подвергаются тщательному анализу.

Анализом называют метод научного исследования путем разложения предмета на составные части или мысленного расчленения объекта путем логической абстракции. Анализ неразрывно связан с синтезом.

Синтез - это метод изучения предмета в его целостности, в единстве и взаимной связи его частей. В результате анализа и синтеза наиболее удачная гипотеза исследования становится рабочей гипотезой, и если она способна устоять при попытках ее опровержения и по-прежнему удачно предсказывает ранее необъясненные факты и взаимосвязи, то она может стать теорией .

Под теорией понимают такую форму научного знания, которая дает целостное представление о закономерностях и существенных связях действительности. Общее направление научного исследования состоит в достижении более высоких уровней предсказуемости. Если теорию не способны изменить никакие факты, а встречающиеся отклонения от нее регулярны и предсказуемы, то ее можно возвести в ранг закона — необходимого, существенного, устойчивого, повторяющегося отношения между явлениями в природе. По мере увеличения совокупности знаний и совершенствования методов исследования гипотезы и даже прочно укоренившиеся теории могут оспариваться, видоизменяться и даже отвергаться, поскольку сами научные знания по своей природе динамичны и постоянно подвергаются критическому переосмыслению.

Исторический метод выявляет закономерности появления и развития организмов, становления их структуры и функции. В ряде случаев с помощью этого метода новую жизнь обретают гипотезы и теории, ранее считавшиеся ложными. Так, например, произошло с предположениями Дарвина о природе передачи сигналов по растению в ответ на воздействия окружающей среды. Сравнительно-описательный метод предусматривает проведение анатомо-морфологического анализа объектов исследования. Он лежит в основе классификации организмов, выявления закономерностей возникновения и развития различных форм жизни.

Мониторинг — это система мероприятий по наблюдению, оценке и прогнозу изменения состояния исследуемого объекта, в частности биосферы. Проведение наблюдений и экспериментов требует зачастую применения специального оборудования, такого как микроскопы, центрифуги, спектрофотометры и др. Микроскопия широко применяется в зоологии, ботанике, анатомии человека, гистологии, цитологии, генетике, эмбриологии, палеонтологии, экологии и других разделах биологии. Она позволяет изучить тонкое строение объектов с использованием световых, электронных, рентгеновских и других типов микроскопов.

Световой микроскоп состоит из оптических и механических частей. Оптические части участвуют в построении изображения, а механические служат для удобства пользования оптическими частями. Общее увеличение микроскопа определяется по формуле: увеличение объектива х увеличение окуляра = увеличение микроскопа.

Например, если объектив увеличивает объект в 8 раз, а окуляр — в 7, то общее увеличение микроскопа равно 56.

Дифференциальное центрифугирование, или фракционирование, позволяет разделить частицы по их размерам и плотности под действием центробежной силы, что активно используется при изучении строения биологических молекул и клеток.

Основные уровни организации живой природы

  1. Молекулярно-генетический. Важнейшими задачами биологии на этом этапе является изучение механизмов передачи генной информации, наследственности и изменчивости.
  2. Клеточный уровень. Элементарной единицей клеточного уровня организации является клетка, а элементарным явлением - реакции клеточного метаболизма.
  3. Тканевый уровень. Этот уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток.
  4. Органный уровень. Органный уровень представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счёт различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счёт разного количества тканей.
  5. Организменный уровень. Элементарной единицей данного уровня является особь в ее индивидуальном развитии, или онтогенезе, поэтому организменный уровень также называют онтогенетическим. Элементарным явлением данного уровня являются изменения организма в его индивидуальном развитии.
  6. Популяционно-видовой уровень. Популяция - это совокупность особей одного вида, свободно скрещивающихся между собой и проживающих обособленно от других таких же групп особей. В популяциях происходит свободный обмен наследственной информацией и ее передача потомкам. Популяция является элементарной единицей популяционно-видового уровня, а элементарным явлением в данном случае являются эволюционные преобразования, например мутации и естественный отбор.
  7. Биогеоценотический уровень. Биогеоценоз представляет собой исторически сложившееся сообщество популяций разных видов, взаимосвязанных между собой и окружающей средой обменом веществ и энергии. Биогеоценозы являются элементарными системами, в которых осуществляется вещественно- энергетический круговорот, обусловленный жизнедеятельностью организмов. Сами биогеоценозы - это элементарные единицы данного уровня, тогда как элементарные явления - это потоки энергии и круговороты веществ в них. Биогеоценозы составляют биосферу и обусловливают все процессы, протекающие в ней.
  8. Биосферный уровень. Биосфера - оболочка Земли, населенная живыми организмами и преобразуемая ими. Биосфера является самым высоким уровнем организации жизни на планете. Эта оболочка охватывает нижнюю часть атмосферы, гидросферу и верхний слой литосферы. Биосфера, как и все другие биологические системы, динамична и активно преобразуется живыми существами. Она сама является элементарной единицей биосферного уровня, а в качестве элементарного явления рассматривают процессы круговорота веществ и энергии, происходящие при участии живых организмов.

Как уже было сказано выше, каждый из уровней организации живой материи вносит свою лепту в единый эволюционный процесс: в клетке не только воспроизводится заложенная наследственная информация, но и происходит ее изменение, что приводит к возникновению новых сочетаний признаков и свойств организма, в свою очередь подвергающихся действию естественного отбора на популяционно-видовом уровне и т. д.

Биология (от греческих слов βίος - жизнь и λόγος - наука) - совокупность наук о живой природе. Биология изучает все проявления жизни, строение и функции живых существ и их сообществ, распространение, происхождение и развитие живых организмов, связи их друг с другом и с неживой природой.

Для живой природы характерны разные уровни организации ее структур, между которыми существует сложное соподчинение. Все живые организмы вместе с окружающей средой образуют биосферу , которая складывается из биогеоценозов. В них, в свою очередь, входят биоценозы , состоящие из популяций . Популяции составляют отдельные особи. Особи многоклеточных организмов состоят из органов и тканей , образованных различными клетками. Для каждого уровня организации жизни характерны свои закономерности. Жизнь на каждом уровне изучают соответствующие отрасли современной биологии.

Для изучения живой природы биологи применяют различные методы: наблюдение, позволяющее описать то или иное явление; сравнение, которое дает возможность установить закономерности, общие для разных явлений в живой природе; эксперимент, или опыт, когда исследователь сам искусственно создает ситуацию, помогающую выявить те или иные свойства биологических объектов. Исторический метод позволяет на основе данных о современном органическом мире и его прошлом познавать процессы развития живой природы. Кроме этих основных методов применяется много других.

    Римский врач и естествоиспытатель Клавдий Гален.

    Ученый, врач-анатом и хирург эпохи Возрождения Андреас Везалий.

    Английский врач и ученый Уильям Гарвей рассказывает о своих опытах по кровообращению английскому королю Карлу I.

    Микроскоп Роберта Гука (60-е гг. XVII в.).

    Так выглядели срезы пробки под микроскопом Р. Гука. Это было первое изображение клеток.

    Рисунки растительных клеток, сделанные голландским биологом XVII в. Антони ван Левенгуком.

Биология берет свое начало в глубокой древности. Описания животных и растений, сведения об анатомии и физиологии человека и животных были необходимы для практической деятельности людей. Одними из первых попытки осмыслить и привести в систему явления жизни, обобщить накопленные биологические знания и представления сделали древнегреческие, а позже древнеримские ученые и врачи Гиппократ, Аристотель, Гален и другие. Эти воззрения, развитые учеными эпохи Возрождения , положили начало современным ботанике и зоологии, анатомии и физиологии и другим биологическим наукам.

В XVI-XVII вв. в научных исследованиях наряду с наблюдением и описанием стал широко применяться эксперимент. В это время блестящих успехов достигает анатомия. В трудах известных ученых XVI в. А. Везалия и М. Сервета были заложены основы представлений о строении кровеносной системы животных. Это подготовило великое открытие XVII в. - учение о кровообращении, созданное англичанином У. Гарвеем (1628). Через несколько десятилетий итальянец М. Мальпиги открыл при помощи микроскопа капилляры, что позволило понять путь крови от артерий к венам.

Создание микроскопа расширило возможности изучения живых существ. Открытия следовали одно за другим. Английский физик Р. Гук открывает клеточное строение растений, а голландец А. Левенгук - одноклеточных животных и микроорганизмы.

В XVIII в. было накоплено уже много знаний о живой природе. Назрела необходимость классифицировать все живые организмы, привести их в систему. В это время закладываются основы науки систематики . Важнейшим достижением в этой области была «Система природы» шведского ученого К. Линнея (1735).

Дальнейшее развитие получила физиология - наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и процессах, протекающих в организме.

Англичанин Дж. Пристли показал в опытах на растениях, что они выделяют кислород (1771-1778). Позже швейцарский ученый Ж. Сенебье установил, что растения под действием солнечного света усваивают углекислый газ и выделяют кислород (1782). Это были первые шаги на пути исследования центральной роли растений в преобразовании веществ и энергии в биосфере Земли, первый шаг в новой науке - физиологии растений.

А. Лавуазье и другие французские ученые выяснили роль кислорода в дыхании животных и образовании животного тепла (1787-1790). В конце XVIII в. итальянский физик Л. Гальвани открыл «животное электричество», что привело в дальнейшем к развитию электрофизиологии. В это же время итальянский биолог Л. Спалланцани провел точные опыты, опровергавшие возможность самозарождения организмов.

В XIX в. в связи с развитием физики и химии в биологию проникают новые методы исследования. Богатейший материал для изучения природы дали сухопутные и морские экспедиции в малодоступные прежде районы Земли. Все это привело к формированию многих специальных биологических наук.

На рубеже века возникла палеонтология, изучающая ископаемые остатки животных и растений - свидетельства последовательного изменения - эволюции форм жизни в истории Земли. Основоположником ее был французский ученый Ж. Кювье .

Большое развитие получила эмбриология - наука о зародышевом развитии организма. Еще в XVII в. У. Гарвей сформулировал положение: «Все живое из яйца». Однако лишь в XIX в. эмбриология стала самостоятельной наукой. Особая заслуга в этом принадлежит ученому-естествоиспытателю К. М. Бэру , открывшему яйцо млекопитающих и обнаружившему общность плана строения зародышей животных разных классов.

В результате достижений биологических наук в первой половине XIX в. широко распространилась идея родства живых организмов, их происхождения в ходе эволюции. Первую целостную концепцию эволюции - происхождения видов животных и растений в результате их постепенного изменения от поколения к поколению - предложил Ж. Б. Ламарк .

Крупнейшим научным событием века стало эволюционное учение Ч. Дарвина (1859). Теория Дарвина оказала огромное влияние на все дальнейшее развитие биологии. Делаются новые открытия, подтверждающие правоту Дарвина, в палеонтологии (В. О. Ковалевский), в эмбриологии (А. О. Ковалевский), в зоологии, ботанике, цитологии, физиологии. Распространение эволюционной теории на представления о происхождении человека привело к созданию новой отрасли биологии - антропологии. На основе эволюционной теории немецкие ученые Ф. Мюллер и Э. Геккель сформулировали биогенетический закон .

Еще одно выдающееся достижение биологии XIX в. - создание немецким ученым Т. Шванном клеточной теории , доказавшей, что все живые организмы состоят из клеток. Тем самым была установлена общность не только макроскопического (анатомического), но и микроскопического строения живых существ. Так возникла еще одна биологическая наука - цитология (наука о клетках) и как следствие ее - учение о строении тканей и органов - гистология.

В результате открытий французского ученого Л. Пастера (микроорганизмы являются причиной спиртового брожения и вызывают многие болезни) самостоятельной биологической дисциплиной стала микробиология. Работы Пастера окончательно опровергли представления о самозарождении организмов. Исследование микробной природы холеры птиц и бешенства млекопитающих привело Пастера к созданию иммунологии как самостоятельной биологической науки. Существенный вклад в ее развитие внес в конце XIX в. русский ученый И. И. Мечников .

Во второй половине XIX в. многие ученые пытались умозрительно решить загадку наследственности , раскрыть ее механизм. Но только Г. Менделю удалось установить на опыте закономерности наследственности (1865). Так были заложены основы генетики, ставшей самостоятельной наукой уже в XX в.

В конце XIX в. большие успехи сделаны в биохимии. Швейцарский врач Ф. Мишер открыл нуклеиновые кислоты (1869), выполняющие, как было установлено в дальнейшем, функции хранения и передачи генетической информации. К началу XX в. было выяснено, что белки состоят из аминокислот , соединенных друг с другом, как показал немецкий ученый Э. Фишер, пептидными связями.

Физиология в XIX в. развивается в разных странах мира. Особенно существенными были работы французского физиолога К. Бернара, создавшего учение о постоянстве внутренней среды организма - гомеостазе . В Германии прогресс физиологии связан с именами И. Мюллера, Г. Гельмгольца, Э. Дюбуа-Реймона. Гельмгольц развил физиологию органов чувств, Дюбуа-Реймон стал основоположником изучения электрических явлений в физиологических процессах. Выдающийся вклад в развитие физиологии в конце XIX - начале XX в. внесли русские ученые: И. М. Сеченов , Н. Е. Введенский , И. П. Павлов , К. А. Тимирязев .

Генетика сформировалась как самостоятельная биологическая наука, изучающая наследственность и изменчивость живых организмов. Еще из работ Менделя следовало, что существуют материальные единицы наследственности, впоследствии названные генами . Это открытие Менделя было оценено лишь в начале XX в. в результате исследований Х. Де Фриза в Голландии, Э. Чермака в Австрии, К. Корренса в Германии. Американский ученый Т. Морган , исследуя гигантские хромосомы мухи дрозофилы, пришел к выводу, что гены находятся в клеточных ядрах , в хромосомах . Он, а также другие ученые разработали хромосомную теорию наследственности. Тем самым генетика в значительной мере объединилась с цитологией (цитогенетика) и стал понятен биологический смысл митоза и мейоза.

С начала нашего века началось быстрое развитие биохимических исследований во многих странах мира. Основное внимание было уделено путям превращения веществ и энергии во внутриклеточных процессах. Было установлено, что эти процессы в принципе одинаковы у всех живых существ - от бактерий до человека. Универсальным посредником в превращении энергии в клетке оказалась аденозинтрифосфорная кислота(АТФ) . Советский ученый В. А. Энгельгардт открыл процесс образования АТФ при поглощении клетками кислорода. Открытие и исследование витаминов , гормонов , установление состава и строения всех основных химических компонентов клетки выдвинули биохимию на одно из ведущих мест в ряду биологических наук.

Еще на рубеже XIX и XX вв. профессор Московского университета А. А. Колли поставил вопрос о молекулярном механизме передачи признаков по наследству. Ответ на вопрос дал в 1927 г. советский ученый Н. К. Кольцов , выдвинув матричный принцип кодирования генетической информации (см. Транскрипция , Трансляция).

Матричный принцип кодирования был разработан советским ученым Н. В. Тимофеевым-Ресовским и американским ученым М. Дельбрюком.

В 1953 г. американец Дж. Уотсон и англичанин Ф. Крик использовали этот принцип при анализе молекулярной структуры и биологических функций дезоксирибонуклеиновой кислоты (ДНК). Так на основе биохимии, генетики и биофизики возникла самостоятельная наука - молекулярная биология.

В 1919 г. в Москве был основан первый в мире Институт биофизики. Эта наука исследует физические механизмы преобразования энергии и информации в биологических системах. Существенная проблема биофизики - выяснение роли различных ионов в жизни клетки. В этом направлении работали американский ученый Ж. Лёб, советские исследователи Н. К. Кольцов, Д. Л. Рубинштейн. Эти исследования привели к установлению особой роли биологических мембран . Неравновесное распределение ионов натрия и калия по обе стороны мембраны клетки, как показали английские ученые А. Л. Ходжкин, Дж. Экле и А. Ф. Хаксли, является основой распространения нервного импульса.

Значительных успехов добились науки, изучающие индивидуальное развитие организмов - Онтогенез. Были разработаны, в частности, методы искусственного партеногенеза .

В первой половине XX в. советский ученый В. И. Вернадский создал учение о биосфере Земли. В это же время В. Н. Сукачев заложил основы представлений о биогеоценозах.

Изучение взаимодействия отдельных особей и их совокупностей с окружающей средой привело к формированию экологии - науки о закономерностях взаимоотношений организмов со средой обитания (термин «экология» предложил в 1866 г. немецкий ученый Э. Геккель).

Самостоятельной биологической наукой стала этология, изучающая поведение животных .

В XX в. получила дальнейшее развитие теория биологической эволюции. Благодаря развитию палеонтологии и сравнительной анатомии было выяснено происхождение большинства крупных групп органического мира, вскрыты морфологические закономерности эволюции (советский ученый А. Н. Северцов). Огромное значение для развития эволюционной теории имел синтез генетики и дарвинизма (работы советского ученого С. С. Четверикова , английских ученых С. Райта, Р. Фишера, Дж. Б. С. Холдейна), приведший к созданию современного эволюционного учения. Ему посвящены труды американских ученых Ф. Г. Добржанского, Э. Майра, Дж. Г. Симпсона, англичанина Дж. Хаксли, советских ученых И. И. Шмальгаузена , Н. В. Тимофеева-Ресовского , немецкого ученого Б. Ренша.

Физиология растений добилась успехов в познании природы фотосинтеза , изучении участвующих в нем пигментов , и прежде всего хлорофилла.

С выходом человека в космическое пространство появилась новая наука - космическая биология. Основная задача ее - жизнеобеспечение людей в условиях космического полета, создание искусственных замкнутых биоценозов на космических кораблях и станциях, поиск возможных проявлений жизни на других планетах, а также подходящих условий для ее существования.

В 70-е гг. возникла новая отрасль молекулярной биологии - генная инженерия , задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, т. е. управление наследственностью. В результате этих работ стало возможным введение генов, взятых из одних организмов или даже искусственно синтезированных, в клетки других организмов (например, введение гена, кодирующего синтез инсулина у животных, в клетки бактерий). Стала возможной гибридизация клеток разных видов - клеточная инженерия. Разработаны методы, позволяющие выращивать организмы из отдельных клеток и тканей (см. Культура клеток и тканей). Это открывает огромные перспективы в размножении копий - клонов ценных индивидуумов.

Все эти достижения имеют чрезвычайно важное практическое значение - они стали основой новой отрасли производства - биотехнологии . Уже сейчас осуществляется биосинтез лекарств, гормонов, витаминов, антибиотиков в промышленных масштабах. А в будущем таким путем мы сможем получить основные компоненты пищи - углеводы , белки , липиды . Использование солнечной энергии по принципу фотосинтеза растений в биоинженерных системах разрешит проблему обеспечения энергией основных потребностей людей.

Значение биологии в наши дни неизмеримо возросло и в связи с проблемой сохранения биосферы из-за бурного развития промышленности, сельского хозяйства, роста населения Земли. Появилось важное практическое направление биологических исследований - изучение среды обитания человека в широком смысле и организация на этой основе рациональных способов ведения народного хозяйства, охраны природы .

Другое важнейшее практическое значение биологических исследований - использование их в медицине. Именно успехи и открытия в биологии определили современный уровень медицинской науки. С ними связан и дальнейший прогресс медицины. О многих задачах биологии, связанных со здоровьем людей, вы прочтете в нашей энциклопедии (см. Иммунитет , Бактериофаг , Наследственность и др.).

Биология в наши дни становится реальной производительной силой. По уровню биологических исследований можно судить о материально-техническом развитии общества.

Накоплению знаний в новых и классических областях биологии способствует применение новых методов и приборов, например появление электронной микроскопии.

Растет число биологических научно-исследовательских институтов, биостанций, а также заповедников и национальных парков, играющих важную роль как «природные лаборатории».

Большое число биологов разных специальностей готовят высшие учебные заведения (см. Биологическое образование). Многие из вас пополнят в будущем многочисленный отряд специалистов, перед которым стоят задачи решения важных биологических проблем.

Биология – совокупность или система наук о живых системах. Понятие «живые системы» здесь важно подчеркнуть, поскольку жизнь не существует сама по себе, а является свойством определенных систем.

Классификация наук - многоступенчатое, разветвленное деление наук, использующее на разных этапах деления разные основания.

Предмет изучения биологии – все проявления жизни, а именно:

· строение и функции живых существ и их природных сообществ;

· распространение, происхождение и развитие новых существ и их сообществ;

· связи живых существ и их сообществ друг с другом и с неживой природой.

Биология является системой наук, которые могут быть классифицированы различным образом.

1. По предмету изучения: ботаника, зоология, микробиология и т.д.

2. По общим свойствам живых организмов:

· генетика (закономерности наследственности)

· биохимия (превращения вещества и энергии)

· экология (взаимоотношения живых существ и их природных сообществ с окружающей средой) и т.п.

3. По уровню организации живой материи, на котором рассматриваются живые системы:

· молекулярная биология;

· цитология;

· гистология и т.п.

Приведенные классификации, разумеется, не носят абсолютного характера. Так, например, исследование клетки (цитология) в настоящее время немыслимо без изучения биохимии клетки.

Можно также говорить о трех магистральных направлениях биологии или, по образному выражению трех образах биологии:

1. Традиционная или натуралистическая биология. Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности – «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку – натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 – 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается в принципах традиционной биологии, поскольку исследует взаимоотношений организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).



2. Функционально-химическая биология, отражающая сближение биологии с точными физико-химическими науками. Особенность физико-химической биологии – широкое использование экспериментальных методов, которые позволяют исследовать живую материю на субмикроскопическом, надмолекулярном и молекулярном уровнях. Одним из важнейших разделов физико-химической биологии является молекулярная биология – наука изучающая структуру макромолекул, лежащих в основе живого вещества. Биологию нередко называют одной из лидирующих наук 21-го века.

К важнейшим экспериментальным методам, использующимся в физико-химической биологии, относятся метод меченых (радиоактивных) атомов, метолы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования (например, разделение различных аминокислот), использование ЭВМ и др.

3. Эволюционная биология. Это направление биологии изучает закономерности исторического развития организмов. В настоящее время концепция эволюционизма стала, фактически, платформой, на которой происходит синтез разнородного и специализированного знания. В основе современной эволюционной биологии лежит теория Дарвина. Интересно и то, что Дарвину в свое время удалось выявить такие факты и закономерности, которые имеют универсальное значение, т.е. теория созданная им, приложима к объяснению явлений, происходящих не только в живой, но и неживой природе. В настоящее время эволюционный подход взят на вооружение всем естествознанием. Вместе с тем, эволюционная биология – самостоятельная область знания, с собственными проблемами, методами исследования и перспективой развития.

В настоящее время предпринимаются попытки синтеза этих трех направлений («образов») биологии и оформления самостоятельной дисциплины – теоретической биологии.

4. Теоретическая биология. Целью теоретической биологии является познание самых фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи. Здесь разные исследования выдвигают различные мнения по вопросу о том, что должно стать фундаментом теоретической биологии.

Система биологических наук чрезвычайно многопланова, что обусловлено как многообразием проявлений жизни, так и разнообразием форм, методов и целей исследования живых объектов, изучением живого на разных уровнях его организации. Всё это определяет условность любой системы биологических наук. Одними из первых в Биологии сложились науки о животных - зоология и растениях - ботаника, а также анатомия и физиология человека - основа медицины. Другие крупные разделы Биологии выделяемые по объектам исследования, - микробиология - наука о микроорганизмах, гидробиология - наука об организмах, населяющих водную среду, и т.д. Внутри Биологии сформировались более узкие дисциплины; в пределах зоологии - изучающие млекопитающих - териология, птиц - орнитология, пресмыкающихся и земноводных - герпетология, рыб и рыбообразных - ихтиология, насекомых - энтомология, клещей - акарология, моллюсков - малакология, простейших - протозоология;внутри ботаники - изучающие водоросли - альгология, грибы - микология, лишайники - лихенология, мхи - бриология, деревья и кустарники - дендрология и т.д. Подразделение дисциплин иногда идёт ещё глубже. Многообразие организмов и распределение их по группам изучают систематика животных и систематика растений. Биологии можно подразделить на неонтологию, изучающую современный органический мир, и палеонтологию - науку о вымерших животных (палеозоология) и растениях (палеоботаника).

Другой аспект классификации биологических дисциплин - по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологические дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды - экология; изучение разных функций живых существ - область исследований физиологии животных и физиологии растений; предмет исследований генетики - закономерности наследственности и изменчивости; этологии - закономерности поведения животных; закономерности индивидуального развития изучает эмбриология или в более широком современном понимании - биология развития;закономерности исторического развития - эволюционное учение. Каждая из названных дисциплин делится на ряд более частных (например, морфология - на функциональную, сравнительную и др.). Одновременно происходит взаимопроникновение и слияние разных отраслей Биологии с образованием сложных сочетаний, например гисто-, цито- или эмбриофизиология, цитогенетика, эволюционная и экологическая генетика и др. Анатомия изучает строение органов и их систем макроскопически; микроструктуру тканей изучает гистология, клеток - цитология, а строение клеточного ядра - кариология. В то же время и гистология, и цитология, и кариология исследуют не только строение соответствующих структур, но и их функции и биохимические свойства.

Можно выделить в Биологии дисциплины, связанные с использованием определённых. методов исследования, например биохимию, изучающую основные жизненные процессы химическими методами и подразделяемую на ряд разделов (биохимия животных, растений и т.п.), биофизику, вскрывающую значение физических закономерностей в процессах жизнедеятельности и также подразделяемую на ряд отраслей. Биохимическое и биофизическое направления исследований зачастую тесно переплетаются как между собой (например, в радиационной биохимии), так и с другими биологическими дисциплинами (например, в радиобиологии). Важное значение имеет биометрия, в основе которой лежат математическая обработка биологических данных с целью вскрытия зависимостей, ускользающих при описании единичных явлений и процессов, планирование эксперимента и др.; теоретическая и математическая Биологии позволяют, применяя логические построения и математические методы, устанавливать более общие биологические закономерности.

Биология - это наука, изучающая живые организмы. Она раскрывает закономерности жизни и ее развития как особого явления природы.

Среди других наук биология является фундаментальной дисциплиной, относится к ведущим разделам естествознания.

Термин «биология» состоит из двух греческих слов: «биос» – жизнь, «логос» – учение, наука, понятие.

Впервые был употреблен для обозначения науки о жизни в начале XIX. Это сделали независимо друг от друга Ж.-Б. Ламарк и Г. Тревиранус, Ф. Бурдах. В это время биология обособляется из естественных наук.

Биология изучает жизнь во всех ее проявлениях. Предметом биологии являются строение, физиология, поведение, индивидуальное и историческое развитие организмов, их взаимосвязь между собой и окружающей средой. Поэтому биология представляет собой систему, или комплекс, наук, во многом взаимосвязанных. Различные биологические науки возникали на протяжении истории развития науки в следствии обособления различных областей изучения живой природы.

В качестве крупных разделов биологии выделяют зоологию, ботанику, микробиологию, вирусологию и др. как науки, изучающие различные по ключевым моментам строения и жизнедеятельности группы живых организмов. С другой стороны, изучение общих закономерностей живых организмов привело к появлению таких наук как генетика, цитология, молекулярная биология, эмбриология и др. Изучение строения, функциональности, поведения живых существ, их взаимоотношений и исторического развития породило морфологию, физиологию, этологию, экологию, эволюционное учение.

Общая биология изучает наиболее универсальные свойства, закономерности развития и существования живых организмов и экосистем.

Таким образом, биология - это система наук .

Бурное развитие в биологии наблюдалось во второй половине XX века. Это в первую очередь было связано с открытиями в области молекулярной биологии.

Несмотря на свою богатую историю , и в настоящее время в биологических науках продолжают совершаться открытия, ведутся дискуссии, пересматриваются многие концепции.

В биологии особое внимание уделяется клетке (так как она является основной структурно-функциональной единицей живых организмов), эволюции (так как жизнь на Земле претерпевала развитие), наследственности и изменчивости (лежащих в основе преемственности и приспособляемости жизни).

Выделяют ряд последовательных уровней организации жизни: молекулярно-генетический, клеточный, организменный, популяционно-видовой, экосистемный. На каждом из них жизнь проявляется по-своему, что изучается соответствующими биологическими науками.

Значение биологии для человека

Для человека биологические знания в первую очередь имеют следующее значение:

  • Обеспечение человечества питанием.
  • Экологическое значение – контроль за окружающей средой, чтобы она была пригодной для нормальной жизни.
  • Медицинское значение – увеличение продолжительности и качества жизни, борьба с инфекциями и наследственными заболеваниями, разработка лекарств.
  • Эстетическое, психологическое значение.

Человека можно рассматривать как один из результатов развития жизни на Земле. Жизнь людей все еще находится в сильной зависимости от общебиологических механизмов жизнедеятельности. Кроме того, человек влияет на природу и сам испытывает на себе ее воздействие.

Деятельность человека (развитие промышленности и сельского хозяйства), рост народонаселения стали причиной экологических проблем на планете. Происходит загрязнение окружающей среды, разрушение природных сообществ.

Для разрешения экологических проблем необходимо понимание биологических закономерностей.

Кроме того, многие разделы биологии имеют значение для здоровья человека (медицинское значение). Здоровье людей находится в зависимости от наследственности, среды жизни и образа жизни. С этой точки зрения наиболее важны такие разделы биологии как наследственность и изменчивость, индивидуальное развитие, экология, учения о биосфере и ноосфере.

Биология решает задачи обеспечения людей продуктами питания, лекарствами. Биологические знания лежат в основе развития сельского хозяйства.

Таким образом, высокий уровень развития биологии является необходимым условием благополучия человечества.