Физиология и биофизика организма человека. Что такое биофизика, успехи биофизики История проникновения начал физики и математики в биологию


С расширением и углублением человеческих знаний о живых организмах появились такие разделы науки, которые изучают процессы и явления, относящиеся одновременно к различным областям знаний. Среди таких научных дисциплин биологическая физика, или биофизика. Что же она изучает и каковы ее методы исследований?

Известно, что физика изучает основные законы природы: строение атомов и ядер, свойства элементарных частиц, взаимодействие электромагнитных волн и частиц и т. д. Биофизика, возникшая на стыке биологии и физики, - это наука об основных физических и физико-химических процессах в живом организме и их регулировании.

Биофизикам нужно познать закономерности строения и работы живых организмов, не нарушая их свойств, сохраняя организм в живом, деятельном состоянии. Ведь, отмирая, организм теряет присущие ему свойства, все процессы в нем изменяются, и он становится обычной неживой системой. В этом заключается большая трудность. Отсюда возникла необходимость изучать живые организмы на разных «уровнях» - исследовать свойства биологических молекул, характерные особенности и работу клеток, изучать совместную работу органов в целом организме и т. д. Поэтому в биофизике выделились такие крупные разделы: молекулярная биофизика, биофизика клетки, биофизика процессов управления и регуляции и др. Кратко расскажем о каждом из основных разделов биофизики.

Молекулярная биофизика изучает свойства биологических молекул, физико-химические процессы в рецепторных клетках. Эти клетки называются рецепторными или чувствительными, так как они первыми воспринимают сигналы о свете, вкусе, запахе (по-латински «рецептио» - чувствую).

Молекулярная биофизика исследует, например, процессы, которые протекают в органах чувств животных - в органах зрения, слуха, осязания и обоняния. Мы привыкли, что в нашем организме все совершается просто, само собой, и подчас не задумываемся, насколько сложные биофизические процессы происходят, например, когда мы ощущаем вкус сахара или чувствуем запах цветов. А это одна из проблем, над которой много лет работает молекулярная биофизика. Дело в том, что ощущения вкуса или запаха возможны благодаря сложным физико-химическим процессам в рецепторных клетках при взаимодействии с ними молекул различных веществ.

Известно, что химики создали 1 млн. органических соединений и почти каждое из них имеет свой характерный запах. Человек может различать несколько тысяч запахов, причем некоторые вещества мы ощущаем при исключительно малой концентрации - всего миллионные и миллиардные доли миллиграмма на литр воды. Например, чтобы ощутить такие вещества, как скатол, тринитробутилтолуол, достаточно их концентрации 10 -9 мг/л. Животные намного чувствительнее человека. Например, геологи используют специально обученных собак для поиска по запаху рудных месторождений, расположенных глубоко под землей. Всем хорошо известна работа собак-ищеек, находящих след по ничтожно слабому запаху. Но, пожалуй, остротой обоняния всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество, даже если оно содержится в воде в исчезающе малых концентрациях - всего 10 -11 мг/л. Бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 м 3 воздуха.

Молекулярная биофизика помогает выяснить не только различие в чувствительности и строении органов обоняния у различных животных, но и сам процесс определения запаха. Сейчас установлено, что имеется 6-7 основных запахов, разными сочетаниями которых объясняется их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток.

Молекулярная биофизика изучает свойства и процессы не только у животных, но и у растений. В частности, она занимается изучением фотосинтеза. В зеленом листе березы, черемухи, яблони или пшеницы происходят удивительные и сложные процессы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее и создающие с ее помощью из воды и углекислого газа органическое вещество и тем самым дающие жизнь всем живым организмам.

Фотосинтез протекает в зеленых частицах - хлоропластах, находящихся в клетках листа и содержащих растительный пигмент - хлорофилл. Порции световой энергии (фотоны) поглощаются пигментом и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а протон используется для восстановления углекислого газа до углеводов. Протон и электрон, как известно, составляют атом водорода; этот атом «по частям» отнимается у молекулы воды. В процессе фотосинтеза освобождается кислород, которым дышат все живые организмы.

Основа фотосинтеза - самый первый элементарный процесс: взаимодействие порций световой энергии (фотонов) с молекулой хлорофилла. Именно этот процесс изучает молекулярная биофизика в фотосинтезе, с тем чтобы познать, как происходит преобразование световой энергии в энергию химических связей и последующее превращение веществ. Если этот фундаментальный процесс будет познан до конца, его можно будет осуществлять в искусственных условиях. Тогда человечество овладеет самым быстрым и самым экономичным способом получения органических веществ, следовательно, продуктов питания и ценного сырья, которые дают сегодня человеку зеленые растения.

Существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул и системы, образуемые молекулами в клетках (как говорят, субмолекулярные образования), их свойства и изменения, другая исследует свойства и функционирование различных клеток - выделительных, сократительных, обонятельных, светочувствительных и др.

Развитию биофизики клетки во многом способствовали успехи физики, радиоэлектроники, именно благодаря этим наукам биофизика получила электронные микроскопы, позволившие увеличивать микроскопические объекты в сотни тысяч раз. На вооружении биофизиков появился электронный парамагнитный резонанс, с помощью которого можно изучать особые активные части молекул - так называемые свободные радикалы, играющие очень важную роль во всех биологических процессах. С помощью высокочувствительных к свету приборов - фотоэлектронных умножителей (ФЭУ) стало возможным определять крайне малые потоки света. Использование этих приборов привело к большому открытию в биофизике клетки.

Давно была известна способность к свечению у живых организмов: светлячков и различных водных организмов, называемая биолюминесценцией. Но с помощью ФЭУ удалось обнаружить, что способностью к свечению обладают органы почти всех животных и растений. Это так называемое сверхслабое свечение - биохемилюминесценция - происходит в результате физико-химических реакций внутри клеток, и связано оно с внутриклеточным окислением веществ липидов, входящих в структурные элементы. Большую роль в этих процессах играют упомянутые нами свободные радикалы. По интенсивности сверхслабого свечения можно следить за уровнем окислительных обменных реакций и выделением энергии в результате многообразных реакций, идущих внутри клеток.

Обнаружение сверхслабого свечения, наличия свободных радикалов, связи их с жизнедеятельностью клетки резко изменило представления о клеточных процессах. Перед биофизикой клетки встала задача не только разобраться в ультрамикроскопическом строении клетки и ее органелл, но и выяснить, как связаны друг с другом эти элементы, как они работают, в чем причина слаженности, согласованности процессов, совершающихся в клетках.

При исследовании клетки в электронном микроскопе ученым открылся новый мир ультрамикроскопических, т. е. самых мельчайших, клеточных структур. Были обнаружены внутриклеточные мембраны, канальцы, трубочки, пузырьки. Все эти структуры, в миллионы раз тоньше человеческого волоса, играют определенную роль в жизнедеятельности клетки. Любая клетка, кажущаяся простым комочком цитоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших частиц (структурных элементов), действующих точно и согласованно, в строгом порядке, тесно связанных между собой. Количество этих структурных элементов очень велико, например в нервной клетке до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности.

В любой клетке живого организма происходит поглощение необходимых веществ и выделение ненужных, совершается дыхание, деление, наряду с этим клетки выполняют специальные функции. Так, клетки сетчатки глаза определяют силу и качество света, клетки слизистой носа определяют запах веществ, клетки различных желез выделяют физиологически активные вещества - ферменты и гормоны, регулирующие рост и развитие организма.

О всей своей большой работе - увиденном, услышанном, опознанном - клетки нервной ткани животных сообщают электрическими импульсами в головной мозг - главный координирующий центр. Биофизика клетки в целом и один из ее важных разделов, называемый электрофизиологией клетки, изучают, как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах - импульсах, как образуются в клетках биологические токи и потенциалы.

Клетки живого организма тесно связаны между собой, с головным мозгом - главным управляющим центром. В самих клетках, в тысячах их структурных элементов, происходят упорядоченные биохимические процессы. Благодаря чему так согласованно и точно совершаются эти сотни тысяч реакций?

Дело в том, что и клетка, и отдельный орган, и целостный организм представляют собой определенную систему, основанную на специфических законах регулирования и взаимосвязи. Вот эти особенности изучает самый молодой раздел - биофизика процессов управления и регуляции.

Расскажем об этом разделе биофизики, воспользовавшись следующим примером. Каждый орган человека состоит из большого числа клеток, выполняющих специфическую работу. Например, особую роль в обонянии играет слизистая оболочка носа - так называемый слизистый эпителий. Площадь его не более 4 см 2 , но содержит он чуть ли не 500 млн. обонятельных клеток - рецепторов. Сведения об их работе передаются по нервным волокнам, число которых достигает 50 млн., в обонятельный нерв и затем в головной мозг. Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы. Для этого они направляются в различные отделы головного мозга, состоящие из громадного числа клеток. Например, только большие полушария головного мозга содержат 2*10 10 клеток, мозжечок -10 11 клеток. Мозг принимает необходимые "решения" и передает ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы. В центральную нервную систему поступают сотни тысяч разнообразных сигналов из внешней среды о звуках, свете, запахах и сигналы о состоянии клеток самого организма. Из сказанного видно, насколько сложны взаимосвязи в любой живой системе - в отдельной клетке или целом организме, как сложна работа по управлению клетками, регулированию их состояния и контролю за согласованностью всех жизненных процессов.

Этот важный отдел биофизики опирается на закономерности, открытые другой наукой - кибернетикой. Биофизики, изучающие процессы управления и регуляции, пользуясь ее методами, разработали ряд электронных моделей, например черепахи, нервной клетки и процесса фотосинтеза, которые облегчают изучение сложных явлений регуляции в организме.

Исследование регуляторных процессов в живом организме показало, что они обладают удивительным свойством - саморегуляцией. Клетки, ткани, органы живых организмов представляют собой САМОрегулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы. Это означает, что работа клеток, органов и организма в целом определяется свойствами и качествами, заложенными в самом организме. Поэтому каждая клеточка или орган самостоятельно, без помощи извне регулирует постоянство состава среды внутри них. Если под воздействием какого-либо фактора их состояние изменяется, это удивительное свойство помогает им вернуться вновь в нормальное cостояние.

Хлоропласты в клетках листа изменяют свое расположение в зависимости от силы освещения: при сильном освещении они располагаются вдоль стенок клеток (слева); при слабом - по всей клетке. Это пример клеточной саморегуляции.

Вот только один простой пример такой саморегуляции. Мы уже рассказывали о важной роли хлоропластов, находящихся в клетках зеленого листа. Хлоропласты способны к самостоятельному передвижению в клетках под влиянием света, поскольку они очень чувствительны к нему. В солнечный яркий день при большой интенсивности света Хлоропласты располагаются вдоль клеточной стенки, как бы стараясь избежать действия сильного света. В пасмурные облачные дни хлоропласты располагаются по всей поверхности клетки, чтобы поглощать больше лучей. Переход хлоропластов из одного положения в другое под влиянием света (фототаксис) совершается благодаря клеточной саморегуляции.

Познание человеком природы, разнообразных живых организмов идет так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки какой-либо одной науки. Биофизика положила начало новым разделам науки, расширяющим горизонты человеческих знаний. Так выделилась в самостоятельную отрасль биологии радиобиология - наука о действии различных видов радиации на живые организмы, космическая биология, изучающая проблемы жизни в космосе, механохимия, исследующая превращение химической энергии в механическую, происходящее в мышечных волокнах. На основе биофизических исследований возникла новая наука - бионика, изучающая живые организмы с целью использования принципов их работы для создания новых и более совершенных по конструкции приборов и аппаратов.

Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше, как в области изучения молекул, субклеточных структур, так и организма в целом. Каждый день приносит новые открытия, изобретения, ценные идеи. Наш век - это время больших успехов во всех областях знания, в том числе и в изучении природы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФИЗИОЛОГИЯ И БИОФИ3ИКА ВО3БУДИМЫX КЛЕТОК

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

Раздражимость - это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например изменением метаболизма.

Возбудимость - это способность живой ткани отвечать на раздражение активной специфической реакцией - возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани - нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение - это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д. Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель - это фактор внешней или внутренней среды действующий на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы: 1.По природе

а) физические (электричество, свет, звук, механические воздействия и т.д.)

б) химические (кислоты, щелочи, гормоны и т.д.)

в) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека). 2.По месту воздействия:

а) внешние (экзогенные)

б) внутренние (эндогенные) З.По силе:

а) подпороговые (не вызывающие ответной реакции)

б) пороговые (раздражители минимальной силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой) 4.По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в |процессе эволюции, например, свет для фоторецепторов глаза).

б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также:

а) безусловно-рефлекторные раздражители

б) условно-рефлекторные

Законы раздражения. Параметры возбудимости

Реакция клеток, тканей на раздражитель определяется законами раздражения

I .Закон «все или ничего»: При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2. 3акон силы: Чем больше сила раздражителя, тем сильнее ответная реакция Однако выраженностъ ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, умеющих различную возбудимость.

3.Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости, а) Порог раздражения - это минимальная сила раздражителя, при которой возникает возбуждение.

б) Реобаза - это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время - это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

г) Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л. Лапик, для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия, тем выше возбудимость и наоборот.

В клинической практике реобазу и хронаксиго определяют, с помощью метода хронаксиметрии для исследования возбудимости нервных стволов.

4. Закон градиента или аккомодации. Реакция ткани на раздражение зависит от его градиента, Т.е. чем быстрее нарастает сила раздражителя во времени тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому если сила раздражителя возрастает очень медленно возбуждения не будет. Это явление называется аккомодацией.

Физиологическая лабильность (подвижность) - это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем выше ее лабильность. Определение лабильности, предложено Н.Е. Введенским. Наибольшая лабильность у нервов, наименьшая у сердечной мышцы.

Действие постоянного тока на возбудимые ткани

Впервые закономерности действия достоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. катодом возбудимость повышается, а под положительным - анодом, снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани (например, нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном. В настоящее время установлено, что под действием отрицательного электрода - катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным - анодом,» он возрастает. Возникает физический анэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризация, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мсек и менее)МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.

Строение и функции цит оплазматнческой мембраны клеток

Цитоллазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя лилидов и внутреннего белкового. Толщина мембраны 7,5-10 нМ. Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды, 15-30% холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки, пронизывающие всю мембрану и периферические, находящиеся на наружной или внутренней поверхности. Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они, также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану. Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать с различными ФАВ.

Функции мембраны:

1. Обеспечивает целостность клетки, как структурной единицы ткани.

2. Осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью.

3. Обеспечиваег активны и транспорт ионов и других веществ в клетку и из нее

4. Производит восприятие и переработку информации поступающей к клетке в виде химических и электрических сигналов.

Механизмы возбудимости клеток. Ионные каналы мембраны. Механизмы возникновения мембранного потенциала (МЛ) и потенциалов действия (ПД)

В основном, передаваемая в организме информация имеет вид электрических сигналов (например нервные импульсы). Впервые наличие животного электричества установил физиолог Л Гальвани в 1786 г. С целью исследования атмосферного электричества он подвешивал нервно-мышечные препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение мышц. Это свидетельствовало о действия какого-то электричества на нерв нервно-мышечного препарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако, А. Вольта установил, что источником электричества является место контакта двух разнородных металлов - меди и железа. В физиологии первым классическим опытом Гальвани считается прикосновение к нерву нервно-мышечного препарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт. Он набрасывал конец нерва, иннервирующего нервно-мышечный препарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервно-мышечного препарата лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил в 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

Классификация и структура ионных каналов цито плазматической мембраны. Механизмы возникновения мембранного потенциала и потенциалов действия

Первый шаг в изучении причин возбудимости клеток сделал в своей работе «Теория мембранного равновесия» в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциала покоя или МП, близка к калиевому равновесному потенциалу. Это потенциал, образующемуся на полупроницаемой мембране разделяющий растворы с разной концентрацией ионов калия, один из которых содержит крупные непроникающие анионы. Его расчеты уточнил Нернст. Он вывел уравнение диффузионного потенциала для калия он будет равен:

Ек=58 Jg--------= 58 lg-----= - 75 мВ,

такова теоретически рассчитанная величина мП.

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли. Они исследовали гигантское нервное волокно (аксон) кальмара и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия, 50 мМ натрия, 100 мМ хлора и очень мало кальция. Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ натрия, 560 мМ хлора и 10 мМ кальция. Таким образом, внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора

Все ионные каналы подразделяются на следующие группы: 1. По избирательности:

а)Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов. б)Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество. 2.По характеру пропускаемых ионов:

а) калиевые

б) натриевые

в) кальциевые

г) хлорные

З. По скорости инактивации, т.е. закрывания:

а) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение: 1 .Селективный фильтр, расположенный в устье канала Он обеспечивает прохождение через канал строго определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активациониые ворота потенциалзав.исимых каналов имеется сенсор, который открывает их на определенном уровне МП.

З.Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП. (Рис).

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением актикационных (м) и инактивационных (h) ворот (рис): 1 .Закрытом, когда активационные закрыты, а инактивационные открыты. 2. Активированном, и те и другие ворота открыты. З.Инактивированном, активационные ворота открыты, а инактивационные закрыты.

Суммарная проводимость для того или иного иона определяется числом одновременно открытых соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1:0,04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает апектрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов. Рис.

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е. накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет 55-70 мВ, поперечно-полосатых - 90-100 мВ, гладких мышц - 40-60 мВ, железистых клеток - 20-45 мВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину уменьшают ионы натрия, для которых мембрана незначительно проницаема и они могут входить в цитоплазму. С другой стороны, отрицательные иолы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих конов из клетки. Это связано с гем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрий-кал.иевым насосом. Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны. Натрий-калиевый насос - это фермент натрий-калиевая АТФ-аза. Его белковые молекулы встроены в мембрану. Он расщепляет.АТФ и.использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неё. За один цикл каждая молекула натрий-калиевой АТФ-азы выводит 3 иона натрия и вносит

2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неё, натрий-калиевая АТФ-аза на 5-10 мВ увеличивает мембранный потенциал.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ: 1. Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос.

2.Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неб.по калиевым каналам.

3.Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например таким образом происходит натрий-натриевый, натрий-кальциевый, калий -калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкМ стеклянный микроэлектрод Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму. пика (spike). Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для: возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод - катод, а внутреннюю положительный- анод. Это -приведет к снижению величины заряда мембраны - ее деполяризации. При действии слабого допорогового тока происходит пассивная деполяризация, т.е. возникает катэлектротон (рис). Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъём - местный или локальный ответ. Он является следствием открывания небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация потенциала действия. Он находится для нейронов примерно на уровне - 50 мВ.

На кривой потенциала действия выделяют следующие фазы: 1 .Локальный ответ (местная деполяризация), предшествующий развитию ПД.

2.Фаза деполяризации. Во гремя этой фазы МП быстро уменьшается и достигает нулевого уровни. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд -внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мсек.

З.Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мсек.

4.Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится.15-30 мсек.

5.Фаза следовой гиперполяризации или следового положительного потенциала В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Бе длительность 250-300 мсек.

Амплитуда потенциала действия скелетных мышц в среднем: 120-130 иВ, нейронов 80-90 мВ, гладкомышечных клеток 40-50 мВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона - аксонном холмике.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных зависит величина критического уровня деполяризации, чем она выше, тем ниже КУД и наоборот.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ). сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока

Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых канапов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на возбуждение клеток. При полной блокада натриевых каналов, например ядом рыбы тетродонта - тетродотоксином, клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин, лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных импульсов по чувствительным нервам прекращается, наступает обезболивание (анестезия) органа При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е. восстановление МП. Поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также используется в клинической практике. Например, один из них хинидин, удлиняя фазу реполяризации кардиомиоцитов, урежает сердечные сокращения и нормализует сердечньшритм.

Также следует отметить, что чем выше скорость распространения ПД по мембране -клетки, ткани, тем выше ее проводимость.

Соотношение фаз потенциала действия и возбудимости

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением.

В фазу реполяризации ПД когда открываются «все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой даже сверхсильный раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности.

В фазе реполяразации все болыпаяг часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. - Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или относительной рефрактерности.

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение слетки. Следовательно, в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости. Рис. Следует отметить, что явление аккомодации также связано с изменением проводимости ионных.каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых, и активации калиевых каналов. Поэтому развития ПД не происходит.

Физиология мышц

В организме имеются 3 типа мышц: скелетные или поперечно-полосатые, гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела Гладкие мышцы необходимы для перистальтики органов желудочно-кишечного тракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией - способностью к самопроизвольным сокращениям.

Ультраструктура скелетного мышечного волокна

Двигательные единицы Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Оиа включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной; группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно -это клетка цилиндрической формы диаметром 10-100 мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану - сарколемму- В саркоплазме находится несколько ядер, митохондрии, образования саркоплазматического ретикулума (СР) и сократительные элементы -миофибриллы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн. Поперечные трубочки-это впячивания саркоплазмы внутрь клетки. К ним примыкают продольные трубочки с цистерначи. Благодаря этому, потенциал действия может распространятся от сарколеммы на систему саркоплазматического ретикулума. В мышечном волокне содержится более 1000 миофибрилл, расположенных вдоль него. Каждая миофибрилла состоит из 2500 протофибрилл или миофиламентов. Это нити сократительных белков актина и миозина. Миозиновые протофибриллы толстые, актиновые тонкие.

На миозиновых нитях расположены отходящие под углом поперечные отростки с головками. У скелетного мышечного волокна при световой микроскопии видна поперечная исчерченность, т.е. чередование светлых и темных полос. Темные полосы называют А-дисками или анизотропными, светлые I-дисками (изотропными). В А-дисках сосредоточены нити миозина, обладающие анизотропией и поэтому имеющие темный цвет. 1-диски образованы нитями актина. В центре 1-дисков видна тонкая Z-пластинка. К ней прикрепляются актиновые протофибриллы. Участок миофибриллы между двумя Z-лластинками называется саркомером. Это структурный элемент миофибрилл. В покое толстые миозин"овые нити лишь на небольшое расстояние входят в промежутки между актиновыми. Поэтому в средней части А-дисха имеется более светлая Н-зона, где нет актиновых нитей. При электронной микроскопии в ее центре видна очень тонкая М-линия. Она образована цепями опорных белков, к которым крепятся миозиновые протофибриллы (рис).

Механизмы мышечного сокращения

При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а 1-диски и Н-зоны саркомеров суживаются. С помощью электронной микроскопии установлено, что длина нитей актина л миозина в момент сокращения не изменяется. Поэтому Хаксли и Хэнсон разработали теорию скольжения нитей. Согласно ей мышца укорачивается в результате движения тонких актиновых нитей в промежутки между миозиновыми. Это приводит к укорочению каждого саркомера, образующего миофибриллы. Скольжение же нитей обусловлено тем, что при переходе в активное состояние головки отростков миозина связываются с центрами актиновых нитей и вызывают их движение относительно себя (гребковые движения). Но это последний этап всего сократительного механизма. Сокращение начинается с того, что в области концевой пластинки двигательного нерва возникает ПД. Он с большой скоростью распространяется по сарколемме и переходит с неё по системе поперечных трубочек СР, на продольные трубочки и цистерны. Возникает деполяризация мембраны цистерн и из них в саркоплазму высвобождаются ионы кальция. На нитях актина расположены молекулы еще двух белков -тропонина и тропомиозина При низкой (менее 10-8 М) концентрации кальция, т.е. в состояния покоя, тропомиозин блокирует присоединение мостиков миозина к нитям актина Когда ионы кальция начинают выходить из СР, молекула тропонина изменяет свою форму таким образом, что освобождает активные центры актина от тропомиозина. К этим центрам присоединяются головки миозина и начинается скольжение за счет ритмического прикрепления я разъединения поперечных мостиков с нитями актина При этом головки ритмически продвигаются по нитям: актина к Z-мембранам. Для полного сокращения мышцы необходимо 50 таких циклов. Передача сигнала от возбужденной мембраны к миофибриллам называется электромеханическим сопряжением. Когда генерация ПД прекращается и мембранный потенциал, возвращается к исходному уровню, начинает работать Са-насос (фермент Са-АТФаза). Ионы кальция вновь закачиваются в цистерны саркоплазматического ретикулума и их концентрация падает ниже 10-8 М. Молекулы тропонина приобретают исходную форму и тропомиозин вновь начинает блокировать активные центры актина. Головки миозина отсоединяются от них и мышца за счет эластичности приходит в исходное расслабленное состояние.

Энергетика мышечного сокращения

Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры, расщепляющие АТФ до АДФ и неорганического фосфата. Т.е. миозин является одновременно ферментом АТФ-азой. Активность миозина как АТФазы значительно возрастает при его взаимодействии с актином. При каждом цикле взаимодействия актина с головкой миозином расщепляется 1 молекула АТФ. Следовательно, чем больше мостиков переходят в активное состояние, тем больше расщепляется АТФ, тем сильнее сокращение. Для стимуляции АТФ-азной активности миозина требуются ионы кальция, выделяющиеся из СР, которые способствуют освобождению активных центров актина от тропамиозина. Однако запасы АТФ в клетке ограничены. Поэтому для восполнения запасов АТФ происходит его восстановление - ресинтез. Он осуществляется анаэробным и аэробным путем. Процесс анаэробного ресинтеза осуществляется фосфагенной и гликолитической системами. Первая использует для восстановления АТФ запасы креатинфосфата. Он расщепляется на креатин и фосфат, который с помощью ферментов переносится на АДФ (АДФ+ф=АТФ).Фосфагенная система ресинтеза обеспечивает наибольшую мощность сокращения, но в "связи с малым количеством креатинфосфата в клетке, она функционирует лишь 5-6 секунд сокращения. Гликолитическая система использует для ресинтеза АТФ анаэробное расщепление глюкозы (гликогена) до молочной кислоты. Каждая молекула глюкозы обеспечивает восстановление трех.молекул АТФ. Энергетические возможности этой системы выше, чем фосфагенной, но и она может служить источником энергии сокращения лишь 0,5 - 2 мин. Лри этом работа гликолитической системы сопровождается накоплением в мышцах молочной кислоты и снижением содержания кисдоррда. Лри продолжительной работе, с усилением.кровообращения, ресинтез АТФ начинает осуществляться с помощью окислительного фософрилирования, т.е. аэробным путем. Энергетические возможности окислительной системы значительно больше остальных. Процесс происходит за счет окисления углеводов и жиров. При интенсивной работе в основном окисляются углеводы, при умеренной жиры. Для расслабления также нужна энергия АТФ. После смерти содержание АТФ в клетках быстро снижается и когда становится ниже критического, поперечные мостики миозина не могут отсоединиться от актиновых нитей (до ферментативного аутолиза этих белков). Возникает трупное окоченение. АТФ необходима для расслабления потому, что обеспечивает работу Са-насоса.

Биомеханика мышечных сокращений

Одиночное сокращение, суммация, тетанус

При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1 Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около 1-2 мсек. Во время латентного периода генерируется и распространяется ЛД происходит высвобождения кальция из СР, взаимодействие актина с миозином и т.д 2.Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительности от 10 до 100 мсек., З.Период расслабления. Его длительность несколько больше, чем укорочения. Рис.

В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. .Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются.

Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефрактерного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, То СуМмации не будет, потому что мышца находится в состоянии рефрактерности.

Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса; зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис). Гладкий тетанус возникает тогда, когда каждое последующее раздражение наносится в конце периода укорочения. Т.е. имеет место полная суммация отдельных сокращений и (рис). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук при алкогольной интоксикации и болезни Паркинсона.

Влияние частоты и силы раздражения на амплитуду сокращения

Если постепенно увеличивать частоту раздражения, то амплитуда тетанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной. Дальнейшее увеличение частоты раздражения сопровождается снижением силы тетанического сокращения. Частота, при которой начинается снижение амплитуды сокращения, называется пессимальной. При очень высокой частоте раздражения мышца не сокращается (рис.). Понятие оптимальной и пессимальной частот предложил Н.Е.Введенский. Он установил,- что каждое раздражение пороговой или сверхпороговой силы, вызывая сокращение, одновременно изменяет возбудимость мышцы. Поэтому при постепенном увеличении частоты раздражения, действие импульсов все больше сдвигаются к началу периода расслабления, т.е. фазе экзальтации. При оптимальной частоте все импульсы действуют на мышцу в фазе экзальтации, т.е. повышенной возбудимости. Поэтому амплитуда тетануса максимальна. При дальнейшем увеличении, частоты раздражения, все большее количество импульсов воздействуют на мышцу, находящуюся в фазе рефрактерности. Амплитуда тетануса уменьшается.

Одиночное мышечное волокно, как и любая возбудимая клетка, реагирует на раздражение по закону «все или ничего». Мышца подчиняется закону силы. При увеличении силы раздражения, амплитуда сокращения ее растет. Лри определенной (оптимальной) силе амплитуда становится максимальной. Если же и дальше повышать силу раздражения, амплитуда сокращения Не увеличивается и даже уменьшается за счет катодической депрессии. Такая сила будет пессимальной. Подобная реакция мышцы объясняется тем, что она состоит из волокон разной возбудимости, поэтому увеличение силы раздражения сопровождается возбуждением все большего их числа. При оптимальной силе все волокна вовлекаются в сокращение. Католическая депрессия - это снижение возбудимости под действием деполяризующего тока - катода, большой силы или длительности.

Режимы сокра щения. Сила и работа мышц

Различают следующие режимы мышечного сокращения:

1.Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют.

2.Изометрическое сокращения. Длина мышцы не изменяется, но тонус возрастает. Лежат в «основе статической работы, например при поддержании позы тела

З.Ауксотонические сокращения. Изменяются и длина и тонус мышцы. С помощью их происходит передвижение тела, другие двигательные акты.

Максимальная сила мышц - это величина максимального напряжения, которое может развить мышца. Она зависит от строения.мышцы, ее функционального состояния, .исходной длины, пола, возраста, степени тренированности человека.

В зависимости от строения, выделяют мышцы с параллельными волокнами (например портняжная), веретенообразные (двуглавая мышца плеча), перистые (икроножная). У этих типов мышц различная площадь поперечного физиологического сечения. Это сумма площадей поперечного сечения всех мышечных волокон, образующих мышцу. Наибольшая площадь поперечного физиологического сечения, а следовательно сила, у перистых мышц. Наименьшая у мышц с параллельным расположением волокон (рис.). При умеренном растяжение мышцы сила ее сокращения возрастает, но при перерастяжении уменьшается. При умеренном нагревании она также увеличивается, а охлаждении снижается. Сила мышц снижается при утомлении, нарушениях метаболизма и т.д. Максимальная сила различных мышечных групп определяется динамометрами, кистевым, становым и т.д.

Для сравнения силы различных мышц определяют их удельную ил и. абсолютную силу. Она равна максимальной, деленной на кв. см. площади поперечного сечения мышцы. Удельная сила икроножной мышцы человека составляет 6,2 кг/см2, трехглавой - 16,8 кг/см2, жевательных - 10 кг/см 2.

Работу мышц делят на динамическую и статическую Динамическая выполняется при перемещении груза. При.динамической работе изменяется длина мышцы и ее напряжение. Следовательно мышца работает в ауксотоническом режиме. При статической работе перемещения груза не происходит, т.е. мышца работает в изометрическом режиме. Динамическая работа равна произведению веса груза на высоту его подъема или величину укорочения мышцы (А = Р * h). Работа измеряется в кГ.М, джоулях. Зависимость величины работы от нагрузки подчиняется закону средних нагрузок. При увеличении нагрузки работа мышц первоначально растет. При средних нагрузках она становится максимальной. Если увеличение нагрузки продолжается, то работа снижается (рис.)- Такое же влияние на величину работы оказывает ее ритм. Максимальная работа мышцы осуществляется при среднем ритме. Особое значение в расчете величины рабочей нагрузки имеет определение мощности мышцы. Это работа выполняемая в единицу времени

(Р = А * Т). Вт

Утомление мышц

Утомление - это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, но снижается амплитуда (рис.). Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях полного расслабления не наступает. Развивается контрактура. Это состояние длительного непроизвольного сокращения мышцы. Работа и утомление мышц исследуются с помощью эргографии.

В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1.Теория Шиффа: утомление является следствием истощения энергетических запасов в мышце. 2.Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена. 3.Теория Ферворна: утомление объясняется недостатком кислорода в мышце.

Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез АТФ, накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме, интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежит нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке ЛМ.Сеченов установил, что если» наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов и угнетением синаптической передачи.

Двигательные единицы

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном.мышечными волокнами. Внутри мышцы.этот аксон образует.несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне.

Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти)» содержат небольшое количество мышечных.волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

1. Медленные неутомляемые. Они образованы «красными» мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращении таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример -камбаловидная мышца.

I1B. Быстрые, легко утомляемые. Мышечные волокйа содержат много миофибрилл и называются: «белыми». Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза ПА. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (MB). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями (рис). MB и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными; т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок. *

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок -кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК Это явление называется мисгегшым механизмом регуляции сократительной активности.

Физиология процессов межклеточной передачи возбуждения

Проведение возбуждения по нервам

Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки -дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на шкотные, имеющие миелиновуто оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющиеся видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновскач клетка образует оболочку на 1 мм нервного волокна. Участки, где оболочка прерывается, т.е. не покрыты миелином называют перехватами Ранвье. Ширина перехвата 1 мкм (рис.).

Функционально все нервные волокна делят на три группы:

1. Волокна типа Л - это толстые волокна, имеющие миелиновую оболочку. В эту группу входят 4 подтипа:

1.1. Act - к ним относятся двигательные волокна скелетных мышц и афферентные нервы, идущие от мышечных веретен (рецепторов растяжения). Скорость проведения по ним максимальна - 70-120 м/сек

1.2. АР - афферентные волокна, идущие от рецепторов давления и прикосновения кожи. 30 - 70 м/сек 1.3.Ау - эфферентные волокна, идущие к мышечным веретенам (15 - 30 м/сек).

I.4.A5 - афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/сек).

2. Волокна группы В - тонкие миелинизированные волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей. Скорость проведения - 3-18 м/сек

3.Волокна группы С, безмиелиновые постганглионарные волокна вегетативной нервной системы. Скорость 0,5 -3 м/сек.

Проведение возбуждения по нервам подчиняется следующим законам:

1.Закон анатомической и физиологической целостности нерва. Первая нарушается при перерезке, вторая - действии веществ блокирующих проведение, например новокаина.

2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаще всего возбуждение по афферентным путям оно идет к нейрону, а по эфферентным - от.нейрона Такое распространение.называется ортодромным. Очень редко возникает обратное или антидромное распространение возбуждения.

З.Закон изолированного проведения. Возбуждение не передается с одного нервного волокна на другое, входящее в состав этого же нервного ствола

4.Закон бездекрементного проведения. Возбуждение проводится по нервам без декремента, т.е. затухания. Следовательно, нервные импульсы не ослабляются проходя помним. 5.Скорость проведения прямо пропорциональна диаметру нерва.

Нервные волокна обладают свойствами электрического кабеля, у которого не очень хорошая изоляция. В основе механизма проведения возбуждения лежит возникновение местных токов. В результате генерации ПД в аксонном холмике и реверсии мембранного потенциала, мембрана аксона приобретает противоположный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего, невозбужденного участка аксона заряжена противоположным образом. Поэтому между этими участками, по наружной и внутренней поверхностям мембраны начинают проходить местные токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня и в нем также генерируется ПД. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д. (рис.). Т.к. по мембране безмякотного:волокна местные токи текут не прерываясь, поэтому такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им * фебуется. длительное время для прохождения по участку волокна В результате дальность и скорость приведения возбуждения по безмякотным волокнам небольшая.

В мякотных волокнах, участки покрытые миелином обладают большим электрическим сопротивлением. Поэтому непрерывное проведение ПД невозможно. При генерации ПД местные токи текут лишь между соседними перехватами. Ло закону «все или ничего» .возбуждается ближайший.к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д. (рис.). Такое проведение называется сальтаторным (прыжком). При этом механизме ослабления местных токов не происходит и нервные импульсы распространяются на большое расстояние и с большой скоростью.

Сннаптическая передача Ст роение и классификация синапсов

Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы: 1.По механизму передачи:

Подобные документы

    Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.

    реферат , добавлен 31.12.2012

    Сходство физической природы звука и вибрации. Действие низкочастотной вибрации на клетки и ткани организма животных и человека. Патологические процессы, возникающие в результате действия вибрации. Совместное действие шума и вибрации на живой организм.

    контрольная работа , добавлен 21.09.2009

    Сущность пищеварения, критерии его классификации. Функции желудочно-кишечного тракта. Ферменты пищеварительных соков. Строение пищеварительного центра (голод и насыщение). Процесс пищеварения в полости рта и желудке, основные механизмы его регуляции.

    презентация , добавлен 26.01.2014

    Физиология как наука о функциях и процессах, протекающих в организме, ее разновидности и предметы изучения. Возбудимые ткани, общие свойства и электрические явления. Этапы исследования физиологии возбуждения. Происхождение и роль мембранного потенциала.

    контрольная работа , добавлен 12.09.2009

    Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

    презентация , добавлен 12.05.2011

    Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат , добавлен 25.06.2011

    Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

    презентация , добавлен 05.06.2014

    Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.

    презентация , добавлен 05.03.2015

    Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация , добавлен 25.09.2015

    Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

БИОФИЗИКА (биологическая физика), наука о физических и физико-химических механизмах взаимодействий, лежащих в основе биологических процессов, протекающих на разных уровнях организации живой материи - молекулярном, клеточном, организменном и популяционном. Становление и развитие биофизики проходило при тесном взаимодействии биологии с физикой, физической химией и математикой. Согласно классификации, принятой Международным союзом чистой и прикладной биофизики (1961) и отражающей основные объекты и области биофизических исследований, биофизика включает в себя следующие разделы: молекулярную биофизику, в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов; биофизику клетки, изучающую физико-химические основы функции клетки, связь молекулярной структуры мембран и клеточных органелл с их функциями, закономерности координации клеточных процессов, их механические и электрические свойства, энергетику и термодинамику клеточных процессов; биофизику сложных систем, к которым относят отдельные органеллы, целые организмы и популяции; биофизику процессов управления и регуляции, которая занимается исследованием и моделированием принципов управления в биологических системах. В рамках биофизики выделяют также биомеханику, биологическую оптику, биомагнетизм, биологическую термодинамику. К биофизике относят и области науки, изучающие механизмы воздействий на биологические системы различных физических факторов (свет, ионизирующие излучения, электромагнитные поля и др.).

История становления биофизики. Начало изучения физических свойств биологических объектов связывают с работами Г. Галилея и Р. Декарта (17 век), заложившими основы механики, на принципах которой и делались первые попытки объяснить некоторые процессы жизнедеятельности. Р. Декарт, например, считал, что организм человека подобен сложной машине, состоящей из тех же элементов, что и тела неорганического происхождения. Дж. Борелли применил принципы механики в описании механизмов движений животных. В 1628 году У. Гарвей на основе законов гидравлики описал механизм кровообращения. В 18 веке важное значение в познании физико-химических явлений, протекающих в живых организмах, имели открытия в области физики, совершенствование её математического аппарата. Использование физических подходов дало толчок к введению в биологию экспериментальных методов и идей точных наук. Л. Эйлер математически описал движение крови по сосудам. М. В. Ломоносов высказал ряд общих суждений о природе вкусовых и зрительных ощущений, выдвинул одну из первых теорий цветового зрения. А. Лавуазье и П. Лаплас показали единство законов химии неорганических и органических тел, установив, что процесс дыхания аналогичен медленному горению и является источником тепла для живых организмов. Творческая дискуссия между А. Вольтой и Л. Гальваны по поводу открытого последним «живого электричества» легла в основу электрофизиологии.

В 19 веке развитие биологии сопровождалось обогащением знаний о физико-химических свойствах биологических структур и процессов. Огромное значение имело создание электролитической теории растворов С. Аррениусом, ионной теории биоэлектрических явлений В. Нернстом. Были получены основные представления о природе и роли потенциалов действия в механизме возникновения и распространения возбуждения по нерву (Г. Гельмгольц, Э. Дюбуа-Реймон и Ю. Бернштейн, Германия); значение осмотических и электрических явлений в жизни клеток и тканей было выяснено благодаря работам Ж. Лё6а (США), В. Нернста и Р. Герера (Германия). Всё это позволило Э. Дюбуа-Реймону сделать вывод о том, что в материальных частицах организмов не обнаруживается никаких новых сил, которые не могли бы действовать вне их. Такая принципиальная позиция положила конец объяснениям процессов жизнедеятельности действием каких-то особых «живых факторов, не поддающихся физическим измерениям».

Значительный вклад в развитие биофизики внесли отечественные учёные. И. М. Сеченов исследовал закономерности растворения газов в крови, биомеханику движений. Конденсаторная теория возбуждения нервных тканей, основанная на неодинаковой подвижности ионов, была предложена В. Ю. Чаговцом. К. А. Тимирязев определил фотосинтетическую активность отдельных участков солнечного спектра, установив количественную закономерность между скоростью процесса фотосинтеза и поглощением хлорофиллом листьев света разного спектрального состава. Идеи и методы физики и физической химии использовались при исследовании движения, органов слуха и зрения, фотосинтеза, механизма генерации электродвижущей силы в нерве и мышце, значения ионной среды для жизнедеятельности клеток и тканей. В 1905-15 годах Н. К. Кольцов изучал роль физико-химических факторов (поверхностного натяжения, концентрации водородных ионов и других катионов) в жизни клетки. П. П. Лазареву принадлежит заслуга в развитии ионной теории возбуждения (1916), изучении кинетики фотохимических реакций. Он создал первую советскую школу биофизиков, объединил вокруг себя большую группу крупных учёных (в том числе С. И. Вавилов, С. В. Кравков, В. В. Шулейкин, С. В. Дерягин и др.). В 1919 году им был создан в Москве Институт биологической физики Наркомздрава, где велись работы по ионной теории возбуждения, изучению кинетики реакций, идущих под действием света, исследовались спектры поглощения и флуоресценции биологических объектов, а также процессы первичного воздействия на организм различных факторов внешней среды. Открытие А. Г. Гурвичем (1923) митогенетических лучей, стимулирующих деление клеток, получило развитие в работах Г. М. Франка. Огромное влияние на развитие биофизики в СССР оказали книги В. И. Вернадского («Биосфера», 1926), Э. С. Бауэра («Теоретическая биология», 1935), Д. Л. Рубинштейна («Физико-химические основы биологии», 1932), Н. К. Кольцова («Организация клетки», 1936), Д. Н. Насонова и В. Я. Александрова («Реакция живого вещества на внешние воздействия», 1940) и др. Во 2-й половине 20 века успехи в биофизике непосредственно связаны с развитием и совершенствованием физических и химических методов исследований и теоретических подходов, применением электронно-вычислительной техники. Широкое освоение атомной энергии стимулировало интерес к исследованиям в области радиобиологии.

Современные направления биофизики . В современной биофизике можно выделить 2 основных направления: теоретическую биофизику (решает общие проблемы термодинамики биологических систем, динамической организации и регуляции биологических процессов, изучает физическую природу взаимодействий, определяющих структуру, устойчивость и внутримолекулярную динамическую подвижность макромолекул и их комплексов, трансформацию в них энергии) и биофизику конкретных биологических процессов, анализ которых проводится на основе общетеоретических представлений. Основная тенденция связана с проникновением в молекулярные механизмы, лежащие в основе биологических явлений на разных уровнях организации живого. К достижениям биофизики, имеющим общебиологическое значение, можно отнести понимание термодинамических свойств организмов и клеток как открытых систем, формулировку на основе 2-го закона термодинамики критериев эволюции открытой системы к устойчивому состоянию (И. Р. Пригожин); раскрытие механизмов колебательных процессов на уровне популяций, ферментативных реакций. Исходя из теории автоволновых процессов в активных средах, установлены условия самопроизвольного возникновения диссипативных структур в гомогенных открытых системах. На этом основании строятся модели процессов морфогенеза, формирования регулярных структур при росте бактериальных культур, распространения нервного импульса и нервного возбуждения в нейронных сетях.

Развивающаяся область теоретической биофизики - изучение возникновения и природы биологической информации и её связи с энтропией, условий хаотизации и образования фрактальных самоподобных структур в сложных биологических системах. Анализ конкретных биологических процессов в биофизике основан на данных исследований физико-химических свойств биополимеров (белков и нуклеиновых кислот), их строения, механизмов самосборки внутримолекулярной подвижности и т. д. Большое значение имеет использование современных экспериментальных методов, и прежде всего рентгеноструктурного анализа, радиоспектроскопии (ЯМР, ЭПР), спектрофотометрии, электронной туннельной микроскопии, атомной силовой микроскопии, лазерной спектроскопии. Они дают возможность получать информацию о механизмах молекулярных превращений, не нарушая целостности биологических объектов. Так, при рентгеноструктурном анализе белка в 1954 году Дж. Кендрю и М. Перуц предложили способ расчёта расположения атомов в молекуле, что позволило им установить пространственную структуру миоглобина и гемоглобина (к началу 21 века установлена структура около 1000 белков). Расшифровка пространственной структуры ферментов и их активного центра позволяет понять природу молекулярных механизмов ферментативного катализа, планировать на этой основе создание новых лекарственных средств. В области теоретической молекулярной биофизики представления об электронно-конформационных взаимодействиях (Л. А. Блюменфельд, М. В. Волькенштейн), стохастических свойствах белка (О. Б. Птицын) составляют основу понимания принципов функционирования биологических макромолекул.

Традиционно биофизика изучает свойства биологических мембран, их молекулярную организацию, конформационную подвижность белковых и липидных компонентов, устойчивость к действию температуры, перекисному окислению липидов, выяснению их проницаемости для неэлектролитов и различных ионов, молекулярное строение и механизмы функционирования ионных каналов, межклеточные взаимодействия. Большое внимание уделяется механизмам преобразования энергии (смотри Биоэнергетика) в структурах, где они сопряжены с переносом электронов и с трансформацией энергии электронного возбуждения. Раскрыта роль свободных радикалов в живых системах и их значение в поражающем действии ионизирующей радиации (Н. М. Эмануэль, Б. Н. Тарусов). Один из разделов биофизики, пограничных с биохимией, - механохимия, изучает механизмы взаимопревращений химической и механической энергий, связанные с сокращением мышц, движением ресничек и жгутиков, перемещением органелл и протоплазмы в клетках. Важное место занимает квантовая биофизика, изучающая первичные процессы взаимодействия биологических структур с квантами света (фотосинтез, зрение, воздействие на кожные покровы и так далее), механизмы биолюминесценции и фототропных реакций, действия ультрафиолетового и видимого света (фотодинамические эффекты) на биологические объекты. Ещё в 1940-х годах А. Н. Теренин раскрыл роль триплетных состояний в фотохимических и ряде фотобиологических процессов. Позднее А. А. Красновский показал способность возбуждённого светом хлорофилла к окислительно-восстановительным превращениям, лежащим в основе первичных процессов фотосинтеза. Современные методы лазерной спектроскопии дают непосредственную информацию о кинетике фотоиндуцированных электронных переходов, колебаниях атомных групп в частотном диапазоне 10 -15 -10 -6 с -1 и более.

Достижения в биофизике в большой степени связаны с развитием медицины и экологии. Медицинская биофизика занимается выявлением в организме (клетке) на молекулярном уровне начальных стадий патологических изменений. Ранняя диагностика заболеваний основана на регистрации спектральных изменений, биолюминесценции, электрической проводимости образцов крови и тканей, сопровождающих заболевание (например, по уровню хемилюминесценции можно судить о характере перекисного окисления липидов). Экологическая биофизика анализирует влияние абиотических факторов (температура, свет, электромагнитные поля, антропогенные загрязнения и др.) на организмы, их жизнеспособность и устойчивость. Важнейшей задачей экологической биофизики является развитие экспресс-методов для оценки состояния экосистем.

Научные учреждения, общества, периодические издания . В России исследования по биофизике проводятся в ряде научно-исследовательских институтов и вузов. Одно из ведущих мест принадлежит научному центру в г. Пущино, где в 1952 году был организован Институт биологической физики Академии Наук СССР, который позднее разделился на Институт биофизики клетки и Институт теоретической и экспериментальной биофизики. Биофизика активно развивается в Институте биофизики Министерства здравоохранения Российской Федерации, Институте молекулярной биологии и Институте белка РАН, Институте биофизики СО РАН, в университетах Москвы, Санкт-Петербурга и Воронежа, в Московском физико-техническом и Московском инженерно-физическом институтах и др. Параллельно с развитием исследований шло формирование базы для подготовки специалистов в области биофизики. Первая в СССР кафедра биофизики была организована в 1953 году на биолого-почвенном (Б. Н. Тарусов), в 1959 - на физическом факультете (Л. А. Блюменфельд) МГУ, а затем в ряде других вузов страны. Курс биофизики читается во всех университетах страны. Биофизические исследования проводятся в институтах и университетах многих стран мира. Международные конгрессы, организуемые Международным союзом теоретической и прикладной биофизики, проводятся регулярно - каждые 3 года. Общества биофизиков существуют в США, Великобритании и ряде других стран. В России Научный совет по биофизике при РАН координирует научную работу, осуществляет международные связи. Секция биофизики имеется при Московском обществе испытателей природы. Среди периодических изданий, в которых публикуются труды по биофизике: «Биофизика» (М., 1956); «Молекулярная биология» (М., 1967); «Радиобиология» (М., 1961); «Биологические мембраны» (М., 1984); «Advances in Biological and Medical Physics» (N. Y., 1948); «Biochimica et Biophysica Acta» (N. Y.; Amst., 1947); «Biophysical Journal» (N.Y., 1960); «Bulletin of Mathematical Biophysics» (Chi., 1939); «Journal of Cell Biology» (N. Y., 1962); «Journal of Molecular Biology» (N. Y.; L., 1959); «Journal of Ultrastructure Research» (N. Y.; L., 1957);«Progress in Biophysics and Biophysical Chemistry» (N. Y., 1950); «Progress in Biophysics and Molecular Biology» (Oxf., 1963) и др.

Лит.: Байер В. Биофизика. М., 1962; Аккерман Ю. Биофизика. М., 1964; Биофизика. М., 1968; Маркин В. С., Пастушенко В. Ф., Чизмаджев Ю.А. Теория возбудимых сред. М., 1974; Жаботинский А. М. Концентрационные автоколебания. М., 1974; Блюменфельд Л. А. Проблемы биологической физики. 2-е изд. М., 1977; Иваницкий Г. Р., Кринский В. И., Сельков Е. Е. Математическая биофизика клетки. М., 1978; Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М., 1979; Хакен Г. Синергетика. М., 1980; Кантор Ч., Шаммел П. Биофизическая химия. 2-е изд. М., 1984; Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическая биофизика. М., 1984; Рубин А. Б. Термодинамика биологических процессов. М., 1984; он же. Биофизика. М., 1999-2000. Т. 1-2; Рубин А. Б., Пытьева Н. Ф., Ризниченко Г. Ю. Кинетика биологических процессов. 2-е изд. М., 1987; Волькенштейн М. В. Биофизика. 2-е изд. М., 1988; Финкельштейн А. В., Птицын О. Б. Физика белка. М., 2002; Аксенов С. И. Вода и ее роль в регуляции биологических процессов. М., 2004.

Познание функций человека - одна из труднейших задач. Развитие науки на первых этапах происходит - дифференциация дисциплин, направленных на глубокое изучение тех или иных проблем. На первом этапе мы пытаемся познать определенную часть и когда это удается сделать возникает другая задача - как составить общее представления. Возникают научные дисциплины на стыке первоначальных специальностей. Это относится и к биофизике, которая появилась на стыке физиологии, физики, физической химии и открыла новые возможности в понимании биологических процессов

Биофизика - наука, изучающая физические и физико-химические процессы на разных уровнях живой материи (молекулярном, клеточном, органном, целого организма), а также закономерности и механизмы воздействия физических факторов внешней среды на живую материю.

Выделяют-

  • молекулярная биофизика - кинетики и термодинамика процессов
  • биофизика клеток - изучение структуры клеток и физико-химические проявления - проницаемость, образование биопотенциалов
  • биофизика органов чувств - физико-химические механизмы рецепции, трансформацию энергии, кодирование информации ив рецепторах.
  • Биофизика сложных системы - процессы регулирования и саморегулирования и термодинамические особенности этих процессов
  • Биофизика воздействия внешних факторов - исследует влияние на организм ионизирующей радиации, ультразвука, вибрации, воздействия света

Задачи биофизика

  1. Установление закономерностей дивой природы путем изучения физических и химических явлений в организме
  2. Изучение механизмов воздействия физических факторов на организм

Эйлер(1707-1783) - законы теории гидродинамики, для объяснения движения крови по сосудам

Лавуазье (1780) - изучал обмен энергии в организме

Гальвани(1786) - основоположник учения о биопотенциалах, о животном электричестве

Гельмгольц(1821)

Рентген - пытался объяснить механизмы мышечного сокращения с позиции пьезо - эффектов

Аррениус - законы классической кинетики для объяснения биологических процессов

Ломоносов - закон сохранения и превращения энергии

Сеченов - изучал транспорт газа в крови

Лазарев - основоположник отечественной биофизической школы

Полинг - открытие пространственной структуры белка

Уотсон и Крик - открытие двойной структуры ДНК

Ходжкин, Хаксли, Катц - открытие ионной природы биоэлектрических явлений

Пригожин -теория термодинамики необратимых процессов

Эйген - теория гиперциклов, как основа эволюции

Сакман, Неер - установили молекулярную структуру ионных каналов

Биофизика становилась в связи с развитием медицины, т.к. там использовались методы физического воздействия на организма.

Развивалась биология и было необходимо проникнуть в тайны биологических процессов, протекающих на молекулярном уровне

Потребность промышленности, развитие которой привело к действию ан организм различных физически факторов - радиоактивное излучение, вибрации, невесомость, перегрузки

Методы биофизических исследований

  • Рентгеноструктурный анализ - исследование атомной структуры вещества, с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а уже по ней можно определить, какие атомы содержатся в веществе и как они расположены. Исследование кристаллических структур, жидкостей и белковых молекул.
  • Колоночная хроматография - различное распределение и анализ смесей между 2 фазами - подвижной и неподвижной. Она может быть связана с различной степенью вещества абсорбции или к различной степени ионного обмена. Может быть газовой, либо жидкостной. Распределение веществ используют в капиллярах - капилярная, либо в трубках, заполненных сорбентом - колончатая. Можно проводить на бумаге, пластинках
  • Спектральный анализ - качественное и количественное определение вещества по оптическим спектрам. Вещество определяют либо по спектру испускания - эмиссионный спектральный анализ или по спектру поглощения - абсорбционный. Содержание вещества определяется по относительной или абсолютной толщине линий в спектре. Также относят радиоспектроскопию - электронный парамагнитный резонанс и ядерно-магнитный резонанс.
  • Изотопная индикация
  • Электронная микроскопия
  • Ультрафиолетовая микроскопия - исследование в УФ лучах биологических объектов повышает контрастность изображения, особенно внутриклеточных структур и она позволяет исследовать иные клетки без предварительной окраски и фиксации препарата

Одним из важнейших условий существования является адекватное приспособлений функций, органов и тканей, систем к среде обитания. Происходит постоянное уравновешивание организма и среды. В этих процессах основной процесс - регуляция и управление физиологическими функциями.

Общие законы реализации, управления и переработки информации в разных системах изучаются наукой кибернетикой(кибернетика - искусство управления) Законы управления являются общими как у человека, так и у технических устройств. Возникновение кибернетики было подготовлено разработкой теорией автоматического регулирования, развитием радиоэлектроники, созданием теории информации.

Эта работа была изложена Шенноном(1948) в «Математическая теория связи»

Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. Кибернетика изучает те сигналы и факторы, которые приводят к определенным процессам управления.

Имеет большое значения для медицины. Анализ биологических процессов позволяет качественно и количественно изучить механизмы регулирования. Информационные процессы управления и регулирования являются определяющими в организме, т.е. являются первичными, на основе которых происходят все процессы.

Системы - организованный комплекс элементов, связанных друг с другом и выполняющих определенные функции в соответствии с программой всей системы. Элементами мозга будут являться нейроны. Элементы коллектива - люди, входящие в него. Только толпа не является кибернетической системой.

Программа - последовательность изменений системы в пространстве и времени, которые могут быть заложены в структуре смой системы или поступить в нее извне.

Связь - процесс взаимодействия элементов друг с другом, при котором происходит обмен веществом, энергией, информацией.

Сообщения бывают непрерывными и дискретными.

Непрерывное имеют характер непрерывно меняющейся величины(артериальное давление, температура, напряжение мышц, музыкальные мелодии).

Дискретное - состоят из отдельных, отличающихся друг от друга ступеней или градаций(порции медиаторов, азотистое основание ДНК, точки и тире азбуки Морзе)

Важен также процесс кодирования информации. Кодируется нервными импульсами, для восприятия информации нервными центрами. Элементы кода - символы и позиции. Символы являются безразмерными величинами, которые отличают что либо(буквы алфавита, математические знаки, нервный импульс, молекулы пахучих веществ, а позиции определяет пространственное и временное расположение символов).

Код информации содержит такую же информацию, как и исходное сообщение. Это явление изоморфности. Кодовый сигнал обладает очень малой энергетической величиной. Поступление информации оценивается по наличию или отсутствию сигнала.

Сообщение и информация - это не одно и тоже, ибо по теории информации

Информация - мера того количества неопределенности, которая устраняется после получения сообщения.

Возможность наступления события - априорная информация .

Та вероятность события после получения информации - апостериорная информация.

Информативность сообщения будет больше, если полученные сведенья повышают апостериорную вероятность.

Свойства информации.

  1. Информация имеет смысл только при наличии ее приемников(потребителя) - «если в комнате стоит телевизор, и в ней никого нет»
  2. Наличие сигнала не обязательно говорит о том, что предается информации, т.к. есть сообщения, которые не несут ничего нового, для потребителя.
  3. Информация может предаваться как на сознательном, так и на подсознательном уровнях.
  4. Если событие достоверно(т.е. его вероятность Р=1), сообщение о том, что оно произошло не несет никакой информации для потребителя
  5. Сообщение о событии, вероятность которого Р < 1, содержит в себе информацию, и тем большую, чем меньше вероятность события, которого произошло.

Дезинформация - отрицательное значение информации.

Мера неопределенности событий - энтропия (H)

Если log2 N=1, тогда N=2

Единица информации - бит (двойничная единица информации)

H=lg N (хартли)

1 хартли - количество информации, необходимое для выбора одной из десяти равновероятных возможностей. 1 хартли = 3,3 бит

Регулятор может работать по возмещению, когда воздействие на организм является компенсирующим действием регулятора, что приводит к нормализации функции

Управление направлено на запуск физиологических функций, на их коррекцию и на согласование процессов.

Наиболее древний - гуморальный механизм регуляции.

Нервный механизм.

Нервно-гуморальный механизм.

Развитие механизмов регуляции приводит к тому, что животные способны к движению и могут уходить из неблагоприятной среды в отличие от растений.

Форпостный механизм (у человека) - в форме условных рефлексов. На сигнальные раздражители мы можем осуществлять меры воздействия на окружающую среду.