Синус косинус отношения сторон. Прямоугольный треугольник


ЕГЭ на 4? А не лопнешь от счастья?

Вопрос, как говорится, интересный... Можно, можно сдать на 4! И при этом не лопнуть... Главное условие - заниматься регулярно. Здесь - основная подготовка к ЕГЭ по математике. Со всеми секретами и тайнами ЕГЭ, о которых Вы не прочитаете в учебниках... Изучайте этот раздел, решайте больше заданий из различных источников - и всё получится! Предполагается, что базовый раздел "С тебя и тройки хватит!" у вас затруднений не вызывает. Но если вдруг... По ссылочкам-то ходите, не ленитесь!

И начнём мы с великой и ужасной темы.

Тригонометрия

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта тема доставляет массу проблем ученикам. Считается одной из самых суровых. Что такое синус и косинус? Что такое тангенс и котангенс? Что такое числовая окружность? Стоит задать эти безобидные вопросы, как человек бледнеет и пытается увести разговор в сторону… А зря. Это простые понятия. И ничем эта тема не сложнее других. Просто нужно с самого начала чётко уяснить ответы на эти самые вопросы. Это очень важно. Если уяснили – тригонометрия вам понравится. Итак,

Что такое синус и косинус? Что такое тангенс и котангенс?

Начнём с глубокой древности. Не волнуйтесь, все 20 веков тригонометрии мы пройдём минут за 15. И, незаметно для себя, повторим кусочек геометрии из 8 класса.

Нарисуем прямоугольный треугольник со сторонами а, в, с и углом х . Вот такой.

Напомню, что стороны, которые образуют прямой угол, называются катетами. а и в – катеты. Их два. Оставшаяся сторона называется гипотенузой. с – гипотенуза.

Треугольник и треугольник, подумаешь! Что с ним делать? А вот древние люди знали, что делать! Повторим их действия. Измерим сторону в . На рисунке специально клеточки нарисованы, как в заданиях ЕГЭ бывает. Сторона в равна четырём клеточкам. Ладно. Измерим сторону а. Три клеточки.

А теперь поделим длину стороны а на длину стороны в . Или, как ещё говорят, возьмём отношение а к в . а/в = 3/4.

Можно наоборот, поделить в на а. Получим 4/3. Можно в поделить на с. Гипотенузу с по клеточкам не посчитать, но она равна 5. Получим в/с = 4/5. Короче, можно делить длины сторон друг на друга и получать какие-то числа.

Ну и что? Какой смысл в этом интересном занятии? Пока никакого. Бестолковое занятие, прямо скажем.)

А теперь сделаем вот что. Увеличим треугольник. Продлим стороны в и с , но так, чтобы треугольник остался прямоугольным. Угол х , естественно, не меняется. Чтобы это увидеть, наведите курсор мышки на картинку, или коснитесь её (если у вас - планшет). Стороны а, в и с превратятся в m, n, k , и, понятное дело, длины сторон изменятся.

А вот их отношения – нет!

Отношение а/в было: а/в = 3/4, стало m/n = 6/8 = 3/4. Отношения других соответствующих сторон также не изменятся . Можно как угодно менять длины сторон в прямоугольном треугольнике, увеличивать, уменьшать, не меняя угла х отношения соответствующих сторон не изменятся . Можно проверить, а можно поверить древним людям на слово.

А вот это уже очень важно! Отношения сторон в прямоугольном треугольнике никак не зависят от длин сторон (при одном и том же угле). Это настолько важно, что отношения сторон заслужили свои специальные названия. Свои имена, так сказать.) Знакомьтесь.

Что такое синус угла х ? Это отношение противолежащего катета к гипотенузе:

sinx = а/с

Что такое косинус угла х ? Это отношение прилежащего катета к гипотенузе:

с osx = в/с

Что такое тангенс угла х ? Это отношение противолежащего катета к прилежащему:

tgx = а/в

Что такое котангенс угла х ? Это отношение прилежащего катета к противолежащему:

ctgx = в/а

Всё очень просто. Синус, косинус, тангенс и котангенс – это некоторые числа. Безразмерные. Просто числа. Для каждого угла – свои.

Зачем я так занудно всё повторяю? Затем, что это надо запомнить . Железно запомнить. Запоминание можно облегчить. Фраза «Начнём издалека…» знакома? Вот и начинайте издалека.

Синус угла – это отношение дальнего от угла катета к гипотенузе. Косинус – отношение ближнего к гипотенузе.

Тангенс угла – это отношение дальнего от угла катета к ближнему. Котангенс – наоборот.

Уже проще, правда?

Ну а если запомнить, что в тангенсе и котангенсе сидят только катеты, а в синусе и косинусе гипотенуза появляется, то всё станет совсем просто.

Всю эту славную семейку – синус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями .


А теперь вопрос на соображение.

Почему мы говорим синус, косинус, тангенс и котангенс угла? Речь-то идёт об отношениях сторон, вроде... При чём здесь угол?

Смотрим на вторую картинку. Точно такую же, как и первая.

Наведите мышку на картинку. Я изменил угол х . Увеличил его с х до Х. Все отношения поменялись! Отношение а/в было 3/4, а соответствующее отношение t/в стало 6/4.

И все остальные отношения стали другими!

Стало быть, отношения сторон никак не зависят от их длин (при одном угле х), но резко зависят от этого самого угла! И только от него. Поэтому термины синус, косинус, тангенс и котангенс относятся к углу. Угол здесь - главный.

Надо железно уяснить, что угол неразрывно связан со своими тригонометрическими функциями. У каждого угла есть свой синус и косинус. И почти у каждого - свой тангенс и котангенс. Это важно. Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны ! И наоборот. Дан синус, или любая другая тригонометрическая функция – значит, мы знаем угол.

Существуют специальные таблицы, где для каждого угла расписаны его тригонометрические функции. Таблицы Брадиса называются. Они очень давно составлены. Когда ещё не было ни калькуляторов, ни компьютеров...

Конечно, тригонометрические функции всех углов запомнить нельзя. Вы обязаны знать их только для нескольких углов, об этом дальше будет. Но заклинание «знаю угол – значит, знаю его тригонометрические функции» - работает всегда!

Вот мы и повторили кусочек геометрии из 8-го класса. Оно нам надо для ЕГЭ? Надо. Вот вам типичная задачка из ЕГЭ. Для решения которой достаточно 8-го класса. Дана картинка:

Всё. Больше никаких данных нет. Надо найти длину катета ВС.

Клеточки слабо помогают, треугольник как-то неправильно расположен.... Специально, поди… Из информации есть длина гипотенузы. 8 клеток. Ещё зачем-то дан угол.

Вот здесь надо сразу вспоминать про тригонометрию. Есть угол, значит, мы знаем все его тригонометрические функции. Какую функцию из четырёх в дело пустить? А посмотрим-ка, что нам известно? Нам известны гипотенуза, угол, а найти надо прилежащий к этому углу катет! Ясно дело, косинус нужно в дело запускать! Вот и запускаем. Просто пишем, по определению косинуса (отношение прилежащего катета к гипотенузе):

cosC = ВС/8

Угол С у нас 60 градусов, его косинус равен 1/2. Это знать надо, безо всяких таблиц! Стало быть:

1/2 = ВС/8

Элементарное линейное уравнение. Неизвестное – ВС . Кто подзабыл, как решать уравнения , прогуляйтесь по ссылке, остальные решают:

ВС = 4

Когда древние люди поняли, что у каждого угла имеется свой комплект тригонометрических функций, у них возник резонный вопрос. А не связаны ли как-нибудь синус, косинус, тангенс и котангенс между собой? Так, чтобы зная одну функцию угла, можно было найти остальные? Не вычисляя сам угол?

Вот такие они были неугомонные...)

Связь между тригонометрическими функциями одного угла.

Конечно, синус, косинус, тангенс и котангенс одного и того же угла связаны между собой. Всякая связь между выражениями задаётся в математике формулами. В тригонометрии формул - колоссальное количество. Но здесь мы рассмотрим самые основные. Эти формулы так и называются: основные тригонометрические тождества. Вот они:

Эти формулы надо знать железно. Без них вообще в тригонометрии делать нечего. Из этих основных тождеств вытекают ещё три вспомогательных тождества:

Сразу предупреждаю, что три последние формулы быстро выпадают из памяти. Почему-то.) Можно, конечно, вывести эти формулы из первых трёх. Но, в трудную минуту... Сами понимаете.)

В стандартных заданиях, типа тех, что приведены ниже, есть способ обойтись без этих незапоминающихся формул. И резко уменьшить ошибки по забывчивости, да и в вычислениях тоже. Этот практический приём - в Разделе 555, урок "Связь между тригонометрическими функциями одного угла."

В каких заданиях и как используются основные тригонометрические тождества? Самое популярное задание - найти какую-нибудь функцию угла, если дана другая. В ЕГЭ такое задание из года в год присутствует.) Например:

Найти значение sinx, если х - острый угол, а cosx=0,8.

Задачка почти элементарная. Ищем формулу, где имеются синус и косинус. Вот она эта формула:

sin 2 x + cos 2 x = 1

Подставляем сюда известную величину, а именно, 0,8 вместо косинуса:

sin 2 x + 0,8 2 = 1

Ну и считаем, как обычно:

sin 2 x + 0,64 = 1

sin 2 x = 1 - 0,64

Вот, практически и всё. Мы вычислили квадрат синуса, осталось извлечь квадратный корень и ответ готов! Корень из 0,36 будет 0,6.

Задачка почти элементарная. Но словечко "почти" здесь не зря стоит... Дело в том, что ответ sinx= - 0,6 тоже подходит... (-0,6) 2 тоже 0,36 будет.

Два разных ответа получаются. А нужен один. Второй - неправильный. Как быть!? Да как обычно.) Внимательно прочитать задание. Там зачем-то написано: ...если х - острый угол... А в заданиях каждое слово смысл имеет, да... Эта фраза - и есть дополнительная информация к решению.

Острый угол - это угол меньше 90°. А у таких углов все тригонометрические функции - и синус, и косинус, и тангенс с котангенсом - положительные. Т.е. отрицательный ответ мы здесь просто отбрасываем. Имеем право.

Собственно, восьмиклассникам такие тонкости не нужны. Они работают только с прямоугольными треугольниками, где углы могут быть только острые. И не знают, счастливые, что бывают и отрицательные углы, и углы в 1000°... И у всех этих кошмарных углов есть свои тригонометрические функции и с плюсом, и с минусом...

А вот старшеклассникам без учёта знака - никак. Многие знания умножают печали, да...) И для правильного решения в задании обязательно присутствует дополнительная информация (если она необходима). Например, она может быть дана такой записью:

Или как-нибудь иначе. В примерах ниже увидите.) Для решения таких примеров нужно знать, в какую четверть попадает заданный угол х и какой знак имеет нужная тригонометрическая функция в этой четверти.

Эти азы тригонометрии рассмотрены в уроках что такое тригонометрический круг, отсчёт углов на этом круге, радианная мера угла. Иногда требуется знать и таблицу синусов косинусов тангенсов и котангенсов.

Итак, отметим самое главное:

Практические советы:

1. Запомните определения синуса, косинуса, тангенса и котангенса. Очень пригодится.

2. Чётко усваиваем: синус, косинус, тангенс и котангенс накрепко связаны с углами. Знаем одно - значит, знаем и другое.

3. Чётко усваиваем: синус, косинус, тангенс и котангенс одного угла связаны между собой основными тригонометрическими тождествами. Знаем одну функцию - значит, можем (при наличии необходимой дополнительной информации) вычислить все остальные.

А теперь порешаем, как водится. Сначала задания в объёме 8-го класса. Но и старшеклассникам тоже можно...)

1. Вычислить значение tgА, если ctgА = 0,4.

2. β - угол в прямоугольном треугольнике. Найти значение tgβ, если sinβ = 12/13.

3. Определить синус острого угла х, если tgх = 4/3.

4. Найти значение выражения:

6sin 2 5° - 3 + 6cos 2 5°

5. Найти значение выражения:

(1-cosx)(1+cosx), если sinх = 0,3

Ответы (через точку с запятой, в беспорядке):

0,09; 3; 0,8; 2,4; 2,5

Получилось? Отлично! Восьмиклассники могут уже пройти за своими пятёрками.)

Не всё получилось? Задания 2 и 3 как-то не очень...? Не беда! Есть один красивый приём для подобных заданий. Всё решается, практически, вообще без формул! Ну и, следовательно, без ошибок. Этот приём в уроке: "Связь между тригонометрическими функциями одного угла" в Разделе 555 описан. Там же разобраны и все остальные задания.

Это были задачки типа ЕГЭ, но в урезанном варианте. ЕГЭ - лайт). А сейчас почти такие же задания, но в полноценном егэшном виде. Для обременённых знаниями старшеклассников.)

6. Найти значение tgβ, если sinβ = 12/13, а

7. Определить sinх, если tgх = 4/3, а х принадлежит интервалу (- 540°; - 450°).

8. Найти значение выражения sinβ·cosβ, если ctgβ = 1.

Ответы (в беспорядке):

0,8; 0,5; -2,4.

Здесь в задаче 6 угол задан как-то не очень однозначно... А в задаче 8 и вовсе не задан! Это специально). Дополнительная информация не только из задания берётся, но и из головы.) Зато уж если решили - одно верное задание гарантировано!

А если не решили? Гм... Ну, тут Раздел 555 поможет. Там решения всех этих заданий подробно расписаны, трудно не разобраться.

В этом уроке дано очень ограниченное понятие тригонометрических функций. В пределах 8-го класса. А у старших остаются вопросы...

Например, если угол х (смотрите вторую картинку на этой странице) - сделать тупым!? Треугольник-то вообще развалится! И как быть? Ни катета не будет, ни гипотенузы... Пропал синус...

Если бы древние люди не нашли выход из этого положения, не было бы у нас сейчас ни мобильников, ни TV, ни электричества. Да-да! Теоретическая основа всех этих вещей без тригонометрических функций - ноль без палочки. Но древние люди не подвели. Как они выкрутились - в следующем уроке.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Инструкция

Если необходимо найти косинус угла в произвольном треугольнике, необходимо воспользоваться теоремой косинусов:
если угол острый: cos? = (a2 + b2 – c2)/(2ab);
если угол : cos? = (с2 – a2 – b2)/(2ab), где а, b – длины сторон прилежащих к углу, с – длина стороны противолежащей углу.

Полезный совет

Математическое обозначение косинуса – cos.
Значение косинуса не может быть больше 1 и меньше -1.

Источники:

  • как вычислить косинус угла
  • Тригонометрические функции на единичной окружности

Косинус - это базовая тригонометрическая функция угла. Умение определять косинус пригодится в векторной алгебре при определении проекций векторов на различные оси.

Инструкция

соs?=(b?+c?-а?)/(2*b*c)

Имеется треугольник со сторонами а, b, с, равными 3, 4, 5 мм, соответственно.

Найти косинус угла, заключенного между большими сторонами.

Обозначим противоположный стороне а угол через?, тогда, согласно выведенной выше формуле, имеем:

соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40=32/40=0,8

Ответ: 0,8.

Если треугольник прямоугольный, то для нахождения косинус а угла достаточно знать длины всего двух любых сторон (косинус прямого угла равен 0).

Пусть имеется прямоугольный треугольник со сторонами а, b, с, где с – гипотенуза.

Рассмотрим все варианты:

Найти соs?, если известны длины сторон а и b ( треугольника)

Воспользуемся дополнительно теоремой Пифагора:

соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?))=(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)

Чтобы правильность полученной формулы, подставим в нее из примера 1, т.е.

Проделав элементарные вычисления, получаем:

Аналогично находится косинус в прямоугольном треугольнике в остальных случаях:

Известны а и с (гипотенуза и противолежащий катет), найти соs?

соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?))=(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.

Подставляя значения а=3 и с=5 из примера, получаем:

Известны b и с (гипотенуза и прилежащий катет).

Найти соs?

Произведя аналогичные (показанные в примерах 2 и 3 преобразования), получим, что в этом случае косинус в треугольнике вычисляется по очень простой формуле:

Простота выведенной формулы объясняется элементарно: фактически, прилежащий к углу? катет является проекцией гипотенузы, его длина равна длине гипотенузы, умноженной на соs?.

Подставляя значения b=4 и с=5 из первого примера, получим:

Значит, все наши формулы верны.

Совет 5: Как найти острый угол в прямоугольном треугольнике

Прямоугольный треугольник, вероятно, - одна из самых известных, с исторической точки зрения, геометрических фигур. Пифагоровым "штанам" конкуренцию может составить лишь "Эврика!" Архимеда.

Вам понадобится

  • - чертеж треугольника;
  • - линейка;
  • - транспортир.

Инструкция

Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) всегда будет 90 градусов, а остальные острыми, т.е. меньше 90 градусов каждый. Чтобы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с помощью линейки стороны треугольника и определите наибольшую. Она гипотенуза (AB) и располагается напротив прямого угла (C). Остальные две стороны образуют прямой угол и катетами (AC, BC).

Когда определили, какой угол является острым, вы можете либо величину угла при помощи транспортира, либо рассчитать с помощью математических формул.

Чтобы определить величину угла с помощью транспортира, совместите его вершину (обозначим ее буквой А) с специальной отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Отметьте на полукруглой части транспортира точку, через которую гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла нужно выбирать меньшую, для тупого - большую.

Полученное значение найдите в справочных Брадиса и определите какому углу соответствует полученное числовое значение. Этим методом пользовались наши бабушки.

В наше достаточно взять с функцией вычисления тригонометрических формул. Например, встроенный калькулятор Windows. Запустите приложение "Калькулятор", в пункте меню "Вид" выберете пункт "Инженерный". Вычислите синус искомого угла, например, sin (A) = BC/AB = 2/4 = 0.5

Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, затем кликните по кнопке функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится следующая надпись: asind (0.5) = 30. Т.е. значение искомого угла - 30 градусов.

Источники:

  • Таблицы Брадиса (синусы, косинусы)

Теорема косинусов в математике чаще всего используется в том случае, когда необходимо найти третью сторону по углу и двум сторонам. Однако, иногда условие задачи поставлено наоборот: требуется найти угол при заданных трех сторонах.

Инструкция

Представьте себе, что дан треугольник, у которого известны длины двух сторон и значение одного угла. Все углы этого треугольника не равны друг другу, а его стороны также являются различными по величине. Угол γ лежит напротив стороны треугольника, обозначенной, как AB, которая является этой фигуры. Через данный угол, а также через оставшиеся стороны AC и BC можно найти ту сторону треугольника, которая неизвестна, по теореме косинусов, выведя на ее основе представленную ниже формулу:
a^2=b^2+c^2-2bc*cosγ, где a=BC, b=AB, c=AC
Теорему косинусов иначе называют обобщенной теоремой Пифагора.

Теперь представьте себе, что даны все три стороны фигуры, но при этом ее угол γ неизвестен. Зная, что вид a^2=b^2+c^2-2bc*cosγ, преобразуйте данное выражение таким образом, чтобы искомой величиной стал угол γ: b^2+c^2=2bc*cosγ+a^2.
Затем приведите показанное выше уравнение к несколько иному виду: b^2+c^2-a^2=2bc*cosγ.
Затем данное выражение следует преобразовать в представленное ниже: cosγ=√b^2+c^2-a^2/2bc.
Осталось подставить в формулу числа и осуществить вычисления.

Чтобы найти косинус , обозначенного как γ, его необходимо выразить через обратную тригонометрическую , называемую арккосинусом. Арккосинусом числа m значение угла γ, для которого косинус угла γ равен m. Функция y=arccos m является убывающей. Представьте себе, например, что косинус угла γ равен одной второй. Тогда угол γ может быть определен через арккосинус следующим образом:
γ = arccos, m = arccos 1/2 = 60°, где m = 1/2.
Аналогичным образом можно найти и остальные углы треугольника при двух других неизвестных его сторонах.

Синус и косинус - две тригонометрические функции, которые называют «прямыми». Именно их приходится вычислять чаще других и для решения этой задачи сегодня каждый из нас имеет немалый выбор вариантов. Ниже приведено несколько наиболее простых способов.

Инструкция

Используйте транспортир, карандаш и лист бумаги, если других средств вычисления нет под рукой. Одно из определений косинуса дается через острые углы в прямоугольном треугольнике - его равно соотношению между длиной катета, лежащего напротив этого угла и длиной . Нарисуйте треугольник, в котором один из углов будет прямым (90°), а другой углу, которого требуется вычислить. Длина сторон при этом не имеет значения - нарисуйте их такими, которые вам удобнее измерять. Измерьте длину нужного катета и гипотенузы и разделите первое на второе любым удобным способом.

Воспользуйтесь возможностью значения тригонометрических функций с помощью калькулятора, встроенного в поисковую систему Nigma, если у вас есть доступ в интернет. Например, если требуется вычислить косинус угла в 20°, то загрузив главную страницу сервиса http://nigma.ru наберите в поле поискового запроса «косинус 20 » и нажмите кнопку «Найти!». Можно «градусов» опустить, а слово «косинус» заменить на cos - в любом случае поисковик покажет результат с точностью до 15 знаков после запятой (0,939692620785908).

Откройте стандартную программу- , устанавливаемую вместе с операционной системой Windows, если нет доступа к интернету. Сделать это можно, например, одновременно нажав клавиши win и r, затем введя команду calc и щелкнув по кнопке OK. Для вычисления тригонометрических функций здесь интерфейс, с названием «инженерный» или «научный» (в зависимости от версии ОС) - выберите нужный пункт в разделе «Вид» меню калькулятора. После этого введите величину угла в и щелкните по кнопке cos в интерфейсе программы.

Видео по теме

Совет 8: Как определить углы в прямоугольном треугольнике

Прямоугольный характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, можно вычислять другие. Для этого используются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии.

Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

Понятия в тригонометрии

Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

Углы треугольника

В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

Единичная окружность

Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

Вычисления и основные формулы


Значения тригонометрических функций

Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

Простейшие тригонометрические тождества

Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin х = -1, х = -π/2 + 2πk.
  4. sin х = а, |a| > 1, нет решений.
  5. sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.

Тождества со значением cos х = а, где k — любое целое число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, |a| > 1, нет решений.
  5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

Тождества со значением tg х = а, где k — любое целое число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тождества со значением ctg х = а, где k — любое целое число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формулы приведения

Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

Формулы приведения функций для синуса угла выглядят таким образом:

  • sin(900 — α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 — α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 — α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 — α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса угла:

  • cos(900 — α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 — α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 — α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 — α) = cos α;
  • cos(3600 + α) = cos α.

Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

  • с sin на cos;
  • с cos на sin;
  • с tg на ctg;
  • с ctg на tg.

Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

Формулы сложения

Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

Формулы имеют такой вид:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Эти формулы справедливы для любых величин углов α и β.

Формулы двойного и тройного угла

Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 — 2sin^2 α.
  3. tg2α = 2tgα / (1 — tg^2 α).
  4. sin3α = 3sinα — 4sin^3 α.
  5. cos3α = 4cos^3 α — 3cosα.
  6. tg3α = (3tgα — tg^3 α) / (1-tg^2 α).

Переход от суммы к произведению

Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Переход от произведения к сумме

Эти формулы следуют из тождеств перехода суммы в произведение:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Формулы понижения степени

В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

  • sin^2 α = (1 — cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα — sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 — 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Универсальная подстановка

Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
  • cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
  • tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
  • ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.

Частные случаи

Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

Частные для синуса:

Значение sin x Значение x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk или 5π/6 + 2πk
-1/2 -π/6 + 2πk или -5π/6 + 2πk
√2/2 π/4 + 2πk или 3π/4 + 2πk
-√2/2 -π/4 + 2πk или -3π/4 + 2πk
√3/2 π/3 + 2πk или 2π/3 + 2πk
-√3/2 -π/3 + 2πk или -2π/3 + 2πk

Частные для косинуса:

Значение cos x Значение х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Частные для тангенса:

Значение tg x Значение х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Частные для котангенса:

Значение ctg x Значение x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теоремы

Теорема синусов

Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

Теорема косинусов

Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

Теорема тангенсов

Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

Теорема котангенсов

Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладное применение

Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

Напомню определения синуса и косинуса в прямоугольном треугольнике:

Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Итак, какие ассоциации у вас вызывает слово косинус?

Наверное, у каждого свои 😉 Запоминайте связку:

Таким образом, у вас сразу в памяти возникнет выражение –

«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

Проблема с определением косинуса решена.

Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

Определения:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

СПОСОБ МАТЕМАТИЧЕСКИЙ

Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

Итак! Запомнив указанные формулы вы всегда сможете определить, что:

— тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

— котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

О тангенсе. Запомните связку:

То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

«… отношение противолежащего катета к прилежащему»

Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

«… отношение прилежащего катета к противолежащему»

Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

СПОСОБ УНИВЕРСАЛЬНЫЙ

Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

Надеюсь, материал был вам полезен.

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.